首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Ceramics International》2022,48(15):21787-21793
The cold sintering process reproduces the formation of sedimentary rocks in the Earth's crust by molding raw powder and a small amount of solvent at temperatures of about 300 °C or less under uniaxial pressure of several hundred megapascals. Generally, carbonates and hydroxides cannot be hardened by conventional sintering process due to thermal decomposition. In contrast, when this cold sintering process is selected, since the densification of the starting powder can be achieved by a dissolution-precipitation reaction with water as a solvent, carbonates and hydroxides can be hardened at temperatures below their decomposition temperatures. In the Mg–C–O–H system, magnesium hydroxide and a basic magnesium carbonate were selected as starting compounds, and the mechanism of their densification by a cold sintering process was investigated. The average compressive strength of the obtained magnesium hydroxide solidified products after cold sintering at 250 °C and 270 MPa for 60 min, and basic magnesium carbonate solidified products after cold sintering at 150 °C and 270 MPa for 60 min, were 121 MPa (84% relative density) and 275 MPa (88% relative density), respectively. The added water was found to play an important role in promoting a solution-precipitation process inside the magnesium hydroxide or basic magnesium carbonate powder compact, resulting in low-temperature sintering to form hardened bodies in the Mg–C–O–H system.  相似文献   

2.
Transparent MgO ceramics are successful fabricated via spark plasma sintering at lower temperature using the high sintering activity powders synthesized by precipitated method. The samples were detected by XRD, SEM, TEM, BET, UV-Vis-NIR, microhardness, and so on. The results show that all ceramics prepared at 700°C-900°C are visually transparent and the sample sintered at 860°C for 5 min exhibits the superior transmittance of 60% (800 nm). It is also found that the mechanical and thermal properties of MgO ceramics are all increasing firstly and then decreasing with the increase in the sintering temperature. And the maximum value of hardness, fracture toughness, MSP strength, and Young's modulus of MgO ceramics is 8.25 GPa, 2.01 MPa·m1/2, 206 MPa, and 286 GPa, respectively. Moreover, the thermal conductivity of MgO ceramics sintered at 860°C can reach 48.4 W/mK at room temperature.  相似文献   

3.
According to the circular economy principles, processing routes aiming at reducing the natural resources consumption and the energy demand can be addressed as ‘green’. In this framework, mussel shells, a natural feedstock of calcium carbonate, were successfully transformed into nano-crystalline hydroxyapatite by mechanochemical synthesis at room temperature after mixing with a phosphoric acid solution. The as-synthesized powder was then consolidated up to 82 % relative density by cold sintering (600 MPa, 200 °C). The materials were fully investigated by physical, chemical and thermal characterization techniques. Cold-sintered samples were also subjected to biaxial flexural strength test, showing a flexural resistance of 23 MPa. Cell viability assessment revealed that cold sintered hydroxyapatite derived from mussel shells promotes faster adhesion and spreading of human bone marrow-derived mesenchymal stem cells, in comparison to a commercial hydroxyapatite sintered at 1050 °C. Therefore, cold-sintered mussel shells-derived hydroxyapatite can be a promising future candidate scaffold for bone tissue regeneration.  相似文献   

4.
《Ceramics International》2016,42(12):13888-13892
A comparative analysis of the efficiency of zirconia ceramics sintering by thermal method and high-energy electron beam sintering was performed for compacts prepared from commercial TZ-3Y-E grade powder. The electron energy was 1.4 MeV. The samples were sintered in the temperature range of 1200–1400 °C. Sintering of zirconia ceramics by high-energy accelerated electron beam is shown to reduce the firing temperature by about 200 °C compared to that in conventional heating technique. Ceramics sintered by accelerated electron beam at 1200 °C is of high density, microhardness and smaller grain size compared to that produced by thermal firing at 1400 °C. Electron beam sintering at higher temperature causes deterioration of ceramics properties due to radiation-induced acceleration of high-temperature recrystallization at higher temperatures.  相似文献   

5.
A cold sintering process is adopted to pre-densify CaF2 ceramics from 85.7% at 300 MPa to 91.7% at 750 MPa. Subsequent post-annealings at 1000–1150 °C lead to further improvements in densification, where great enhancements of grain size and crystallinity are also observed from the scanning and transmission electron micrographs. Significant advances in Qf values are achieved in the post-annealed CaF2 ceramics. The optimum Qf value (80,522 GHz) is achieved after cold sintering at 750 MPa and post-annealing at 1000 °C, which is three times higher than the conventional sintered one at 1000 °C (26,448 GHz). Moreover, the obtained low-εr (5.9–6.5) of CaF2 ceramics suggests broad application prospects in the high-band microwave communications. A microstrip patch antenna is fabricated using the CaF2 ceramics as the substrate, which operates at 7.89 GHz in the C-band, with an S11 of ?13.4 dB, simulated high gain and efficiency of 6.41 dBi and ?0.56 dB, respectively.  相似文献   

6.
Low‐temperature sintering of β‐spodumene ceramics with low coefficient of thermal expansion (CTE) was attained using Li2O–GeO2 sintering additive. Single‐phase β‐spodumene ceramics could be synthesized by heat treatment at 1000°C using highly pure and fine amorphous silica, α‐alumina, and lithium carbonate powders mixture via the solid‐state reaction route. The mixture was calcined at 950°C, finely pulverized, compacted, and finally sintered with or without the sintering additive at 800°C–1400°C for 2 h. The relative density reached 98% for the sample sintered with 3 mass% Li2O–GeO2 additive at 1000°C. Its Young's modulus was 167 GPa and flexural strength was 115 MPa. Its CTE (from R.T. to 800°C) was 0.7 × 10?6 K?1 and dielectric constant was 6.8 with loss tangent of 0.9% at 5 MHz. These properties were excellent or comparative compared with those previously reported for the samples sintered at around 1300°C–1400°C via melt‐quenching routes. As a result, β‐spodumene ceramics with single phase and sufficient properties were obtained at about 300°C lower sintering temperature by adding Li2O–GeO2 sintering additive via the conventional solid‐state reaction route. These results suggest that β‐spodumene ceramics sintered with Li2O–GeO2 sintering additive has a potential use as LTCC for multichip modules.  相似文献   

7.
《Ceramics International》2022,48(18):26022-26027
Aluminum nitride (AlN) is used a ceramic heater material for the semiconductor industry. Because extremely high temperatures are required to achieve dense AlN components, sintering aids such as Y2O3 are typically added to reduce the sintering temperature and time. To further reduce the sintering temperature, in this study, a low-melting-temperature glass (MgO–CaO–Al2O3–SiO2; MCAS) was used as a sintering additive for AlN. With MCAS addition, fully dense AlN was obtained by hot-press sintering at 1500 °C for 3 h at 30 MPa. The mechanical properties, thermal conductivity, and volume resistance of the sintered AlN–MCAS sample were evaluated and compared with those of a reference sample (AlN prepared with 5 wt% Y2O3 sintering aid sintered at 1750 °C for 8 h at 10 MPa). The thermal conductivity of AlN prepared with 0.5 wt% MCAS was 91.2 W/m?K, which was 84.8 W/m?K lower than that of the reference sample at 25 °C; however, the difference in thermal conductivity between the samples was only 14.2 W/m?K at the ceramic-heater operating temperature of 500 °C. The flexural strength of AlN–MCAS was 550 MPa, which was higher than that of the reference sample (425 MPa); this was attributed to the smaller grain size achieved by low-temperature sintering. The volume resistance of AlN–MCAS was lower than that of the reference sample in the range of 200–400 °C. However, the resistivity of the proposed AlN–MCAS sample was higher than that of the reference sample (500 °C) owing to grain-boundary scattering of phonons. In summary, the proposed sintering strategy produces AlN materials for heater applications with low production cost, while achieving the properties required by the semiconductor industry.  相似文献   

8.
《Ceramics International》2022,48(5):6024-6036
The effects of the calcination temperature on raw-colemanite-waste properties and calcined waste content on wall tile production were investigated. Waste containing 11.24% B2O3 calcined between 500 and 800°C was added to wall tile granules in various ratios (0–100 wt.%) to produce a low-temperature-sintered wall tile by adding the maximum content of boron waste, as determined through optimal calcination. The low-temperature (850–1000°C) sinterability of the samples and the effect of the calcined colemanite-waste content on the wall tile properties were investigated. The samples were characterised using X-ray fluorescence, X-ray powder diffraction, differential thermal analysis, thermogravimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, and colourimetry. The waste calcined at 800°C exhibited a substantially different phase distribution, bond structure, morphology, and colour. The wall tile produced using 40 wt.% colemanite waste calcined at 800°C and subsequently sintered at 950°C exhibited the optimal properties. The linear firing shrinkage, water absorption, and flexural strength of the optimised wall tile were 0.88%, 16.04%, and 36.07 MPa, respectively. The optimised wall tile exhibited major albite, quartz, and diopside phases and 64% higher strength. The sample calcined at 800°C showed that high colemanite-waste content could be incorporated into ceramic bodies.  相似文献   

9.
This study investigated the high-temperature strength of spark plasma sintered tantalum diboride (TaB2) for the first time. TaB2 exhibited a unique elastic fracture behavior below 1900°C, unlike other transition metal diborides. The consolidation process involved spark plasma sintering at 2000–2200°C yielding dense TaB2 samples. The flexural strength was measured at elevated temperatures up to 2000°C, showing a quite high flexural strength of 400 ± 20 MPa at 1900°C. These findings provide valuable insights into the high-temperature behavior of TaB2, highlighting its potential for advanced applications.  相似文献   

10.
《Ceramics International》2022,48(10):13531-13540
New innovative approach to fabricate porous alumina ceramics by cold sintering process (CSP) is presented using NaCl as pore forming agent. The effects of CSP and post-annealing temperature on the microstructure and mechanical strength were investigated. Al2O3–NaCl composite with bulk density of 2.92 g/cm3 was compacted firstly using CSP and then a porous structure was formed using post-annealing at 1200°C–1500°C for 30 min. Brazilian test method and Vickers hardness test were used to determine the indirect tensile strength and hardness of the porous alumina, respectively. Meanwhile, the phases and the microstructure were respectively examined using X-ray diffractometer and scanning electron microscope (SEM) complemented by the 3D image analysis with X-ray tomography (XRT). SEM structural and XRT image analysis of cold sintered composite showed a dense structure with NaCl precipitated between Al2O3 particles. The NaCl volatization from the composite was observed during the annealing and then complete porous Al2O3 structure was formed. The porosity decreased from 48 vol% to 28 vol% with the annealing temperature increased from 1200 °C to 1500 °C, while hardness and mechanical strength increased from 14.3 to 115.4 HV and 18.29–132.82 MPa respectively. The BET analysis also showed a complex pore structure of micropores, mesopores and macropores with broad pore size distribution.  相似文献   

11.
The chromium-promoted preparation of forsterite refractory materials from ferronickel slag was investigated by microwave sintering of the slag with the additions of sintered magnesia and 0–10 wt% chromium oxide (Cr2O3). The thermodynamic calculations revealed that the addition of Cr2O3 can promote the formations of spinel and liquid phase and maintain high content of forsterite below 1500 °C. The experimental results showed that there existed a stronger promoting effect of Cr2O3 additive on the properties of refractory materials in the microwave field than that in conventional sintering. It was attributed to the preferential formation and growth of spinel with stronger microwave absorption than other phases (e.g., enstatite), the existence of more forsterite, and the enhanced densification in association with the presence of more liquid phase at the same temperature. By microwave sintering of the mixture of ferronickel slag, 25 wt% sintered magnesia, and 4 wt% Cr2O3 at 1350 °C for 20 min, a superior refractory material with refractoriness of 1801 °C, thermal shock resistance of 6 times, bulk density of 2.97 g/cm3, apparent porosity of 1.4%, and compressive strength of 197 MPa was obtained. Compared with that prepared by conventional sintering at 1350 °C for 2 h, the refractoriness and thermal shock resistance were increased by 175 °C and 100%, respectively. The present study provided a novel method for preparing high-quality refractory materials from ferronickel slag and relevant industrial wastes.  相似文献   

12.
《Ceramics International》2022,48(1):674-683
In order to protect carbon fibers (CF) from oxidation damage during sintering process, rod-like Mg-doped nano-hydroxyapatite (Mg-nHA) with an increased thermal decomposition temperature and reduced sintering temperature was synthesized by hydrothermal method. The synthesized bone-like Mg-nHA with similar composition and morphology to bone apatite was used as the matrix to prepare CF reinforced Mg-nHA composites (CF/Mg-nHA) at a low temperature of 700 °C by pressureless sintering. The increase of temperature slightly influenced the growth of Mg-nHA prepared by hydrothermal method from 160 °C to 200 °C. The Mg-nHA were short and rod-like in structure with a length of approximate 100 nm. When doping 1% magnesium, the decomposition temperature of Mg-nHA increased by 100 °C compared with that of nHA. This can protect CF from oxidation damage which is often encountered when sintering CF reinforced hydroxyapatite composites at high temperature and enhance reinforcing effects of CF. The bending strength of CF/Mg-nHA with 1 wt% CF was 8.51 MPa, which increased by 19.5% compared with Mg-nHA. Alternatively, the rod-like Mg-nHA was prepared on the surface of CF by electrochemical deposition and Mg-nHA coated CF was used to reinforce Mg-nHA, the coefficient of thermal expansion mismatch between CF and HA matrix could be mitigated. The compressive strength of Mg-nHA coated CF reinforced Mg-nHA (CF/Mg-nHA/Mg-nHA) composites with 0.5% CF sintered at 800 °C were 41.3 ± 1.56 MPa, which was attributed to the improved strengthening effect of CF and the good interface between CF and Mg-nHA matrix.  相似文献   

13.
Silicon nitride ceramics were pressureless sintered at low temperature using ternary sintering additives (TiO2, MgO and Y2O3), and the effects of sintering aids on thermal conductivity and mechanical properties were studied. TiO2–Y2O3–MgO sintering additives will react with the surface silica present on the silicon nitride particles to form a low melting temperature liquid phase which allows liquid phase sintering to occur and densification of the Si3N4. The highest flexural strength was 791(±20) MPa with 12 wt% additives sintered at 1780°C for 2 hours, comparable to the samples prepared by gas pressure sintering. Fracture toughness of all the specimens was higher than 7.2 MPa·m1/2 as the sintering temperature was increased to 1810°C. Thermal conductivity was improved by prolonging the dwelling time and adopting the annealing process. The highest thermal conductivity of 74 W/(m∙K) was achieved with 9 wt% sintering additives sintered at 1810°C with 4 hours holding followed by postannealing.  相似文献   

14.
Ba0.68Sr0.32TiO3 (BST) thick films were prepared by screen printing on a flexible fluorophlogopite substrate. In order to realise the co-firing of the BST film with a silver electrode at a lower temperature, the BST precursor was used as a solvent for the screen-printing slurry and the cold sintering technique was used to pretreat the film. The sintering temperature of BST thick films prepared by conventional sintering process was higher than 1200 °C. When sintered at 950 °C, the thick films exhibited a high porosity. The density of the thick films was significantly improved after pretreatment with the cold sintering process (CSP). After the cold-sintered thick films were sintered at 950 °C for 30 min and then fired with a silver electrode, the samples exhibited a relative dielectric constant of 773 (at 25 °C and 10 kHz), a dielectric loss of 0.025, a remanent polarization of 5.3 μC/cm2, and a coercive field strength of 38.1 kV/cm. Therefore, the low-temperature co-firing of BST thick films with a silver electrode was successfully realised.  相似文献   

15.
《Ceramics International》2022,48(2):1633-1641
In this project, magnesia-alumina composite granules were prepared via the spray drying method. Next, the synthesized powder was sintered at 1400 °C–1500 °C by the spark plasma sintering method under the pressure of 100 MPa without using any sintering aids. The effects of two sintering temperatures (1400 °C and 1500 °C) on the phase evolution, density, fracture toughness, and light transmission of the samples in the visible and IR range were investigated. SEM results indicated that the magnesia-alumina composite granules had spherical morphology with a mean particle size of 7-8 μm. The XRD pattern showed that after spark plasma sintering at 1400 °C and 1500 °C, magnesium aluminate phase spinel was obtained from the penetration and reaction of alumina and magnesia nanoparticles. The disc sintered at 1400 °C had more transparency than the sample sintered at 1500 °C within the UV–Vis and middle IR region because of the lower porosity of the sample. The magnesium aluminate spinel sintered at 1400 °C had a density of 99.98% theoretical density, hardness of 18 GPa, and fracture toughness of 1.6 MPam1/2.  相似文献   

16.
For the fabrication of complex, micro‐electromechanical systems (MEMS) devices based on low‐temperature co‐fired ceramic (LTCC), higher firing temperatures and longer times than those proposed by the LTCC producer are needed. These changes to the thermal budget may influence the material properties and consequently its functional properties. The effect of the firing conditions on the LTCC DuPont 951 and thus on the phase composition, that is, the alumina/anorthite ratio and porosity, on the mechanical properties is presented. The samples fired at low temperatures (800°C) had a high porosity (7%), which significantly contributed to the low elastic modulus (100 GPa) and the low mechanical strength of the LTCC (140 MPa). The samples fired at 850°C, which had only 1% of porosity, resulted in an elastic modulus of 122 GPa and a flexural strength of 224 MPa. A further increase in the temperature contributed to a slight decrease in the elastic modulus, while no significant difference in the flexural strength could be observed. The enhancement of the flexural strength with an increasing firing temperature was mainly related to a decrease in the porosity and to a lesser extent to the different ratio of the alumina/anorthite phases. The effect of firing time on the phase composition at selected temperatures (i.e., 100 h at 700 and 800°C) is also discussed.  相似文献   

17.
Thermal-assisted cold sintering process (TA-CSP) has been applied to fabricate high dense α-Al2O3 ceramics with submicron grain sizes. The α-Al2O3 (80 wt%) and γ-Al2O3 (20 wt%) powders are firstly mixed and then cold sintered at 300 °C to produce a green bulk with a relatively high density of ~ 86.9 %, and then later a second heat treatment (800–1350 °C) is applied to finally fabricate (~ 98 % dense) α-Al2O3 ceramics with grain sizes of 720 nm. A microstructural analysis with XRD and TEM suggests that the TA-CSP samples not only complete the final densification but also drive a phase transition of γ-Al2O3 to α-Al2O3. To put into perspective the Hardness and Young's modulus of TA-CSP samples reach ~ 14 GPa and ~ 335 GPa, respectively, which is comparable to conventional sintered samples processed at higher temperatures of 1500–1700 °C. Therefore, it is feasible to utilize TA-CSP to prepare α-Al2O3 ceramics with small grain sizes at low sintering temperatures.  相似文献   

18.
《Ceramics International》2021,47(18):25932-25941
This research aims to investigate the density and flexural strength of nanostructured spinel parts fabricated using the low-pressure injection molding (LPIM) method. For this purpose, firstly, the effect of the amount of binder was tested on the rheology behavior of the feedstocks containing spinel nanopowder for producing ceramic parts using the LPIM method. The rheometric analysis indicated that the feedstocks containing 80 wt% powder and 20 wt% binders showed shear-thinning fluid behavior and were chosen as the optimal low-viscosity feedstocks for the LPIM process. After binder removal from LPIMed part, secondly, the effect of sintering temperature was examined on the relative density and flexural strength of the spinel parts. The results indicated that by increasing sintering temperature from 1550 °C to 1700 °C, the size of pores was reduced and grain size was increased from 2 μm to 6 μm. Furthermore, the flexural strength of the parts sintered at 1700 °C was 10 MPa greater than that of the sample sintered at 1650 °C.  相似文献   

19.
The cold sintering process (CSP) densifies ceramics below 300 °C by utilizing a transient phase and applied pressure. Although CSP has been employed for densifying a variety of functional systems, their structural integrity does not always reach that of conventionally sintered parts. On the example of ZnO, this study aims to eliminate processing-induced defects that compromise the strength of cold sintered materials. Ultrasonic evaluation was employed for nondestructive detection of flaws prior to mechanical testing. Load transfer misalignments and fast heating rates were found as major sources of defects, impairing the mechanical strength. Based on these findings, multiple disc-shaped samples (13 mm diameter and ∼1.3 mm thickness) were cold sintered simultaneously using precisely aligned punches and slow heating rates. The obtained homogeneous densification, high relative density (>97%) and relatively high strength (∼120 MPa), i.e. two times superior to previously reported values, demonstrates the feasibility of scaling up the CSP towards industrial implementation.  相似文献   

20.
Cold sintering is a chemo-mechanical densification process which allows densification of ceramics at low temperatures below 300 °C. This substantial reduction in the sintering temperature is enabled by an externally applied pressure and a compatible transient liquid phase. In this paper, ZnO is cold sintered using various commercial organic acids: formic, acetic and citric acid. The effect of these different transient phases on densification, microstructural evolution and mechanical response is investigated. Fourier transform infrared spectroscopy, thermogravimetric analyses and transmission electron microscopy were conducted to explain the chemical interactions in the cold sintering process. High relative densities (~ 96 %) were achieved by formic and acetic acid, whereas poor densification was obtained for citric acid (< 80 %), despite the higher expected solubility of zinc oxide. The higher biaxial strength found in samples sintered with formic acid compared to acetic acid (i.e. ~90 MPa vs. ~40 MPa) is discussed supported by fractographic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号