首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Operability of Very High Temperature Reactor (VHTR) hydrogen cogeneration systems in response to abnormal transients initiated by the hydrogen production plant is one of the important concerns from economical and safety points of views. The abnormal events in the hydrogen production plant could initiate load changes and induce temperature variations in a primary cooling system. Excessive temperature increase in the primary cooling system would cause reactor scrams since the temperature increase in the primary cooling system is restricted in order to prevent undue thermal stresses from reactor structures. Also, temperature decrease has a potential propagation path for reactor scrams by reactivity insertions as a consequence of the reactivity feedbacks. Since suspensions of reactor operation and electricity generation should be avoided even in case of abnormal events in the hydrogen production plant from an economical point of view, an establishment of a control scheme against abnormal transients of hydrogen production plant is required for plant system design.In the present study, basic controls and their integration for the GTHTR300C, a VHTR cogeneration system designed by JAEA with a direct Brayton cycle power conversion unit and thermochemical Iodine-Sulfur process hydrogen production plant (IS hydrogen production plant), against abnormal transients of IS hydrogen production plant are presented. Transient simulations for selected load change events in the IS hydrogen production plants are performed by an original system analysis code which enables to evaluate major phenomena assumed in process heat exchangers of the IS hydrogen production plant.It is shown that abnormal load change events are successfully simulated by the system analysis code developed. The results demonstrated the technical feasibility of proposed controls for continuous operation of the reactor and power conversion unit against load change events in the IS hydrogen production plant.  相似文献   

2.
The CANDLE burnup is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed along the core axis from bottom to top (or from top to bottom) of the core and without any change in their shapes. It can be applied easily to a block-type high temperature gas cooled reactor (HTGR) using an appropriate burnable poison with a high neutron absorption cross section mixed with uranium oxide fuel. In this study, natural gadolinium is used as burnable poison. In the present paper, the simulation of the burnup for the steady state and the startup is performed.

For the steady state simulation with direct solutions of steady state nuclide densities as inputs, the difference between the results of the steady state analysis and the simulation analysis is very small. It confirms that the steady state analysis is correct. When the initial core is constructed from easily available nuclides, the simulation result gives a reactivity change of 1.7% at a burnup time of 0.7 years.  相似文献   


3.
高温气冷实验堆燃料元件双向探测器的研制   总被引:2,自引:1,他引:1  
介绍了高温气冷实验堆燃料元件双向探测器的基本原理和实现方法。它以两个并联的感应线圈为敏感元件,通过双通道法采集信号,以89C51单片机为处理核心,系统软件采用循环扫描输入端口的方式获取过球信号,经智能分析、判断,实现了燃料元件的双向检测。  相似文献   

4.
The tritium concentration in the hydrogen product in Japan's future very high temperature gas-cooled reactor (VHTR) system coupled with a thermochemical water-splitting iodine-sulfur (IS) process (VHTRIS system), named GTHTR300C, was estimated by numerical analysis. The tritium concentration in the hydrogen product significantly depended on undetermined parameters, i.e., the permeabilities of a SO3 decomposer and a H2SO4vaporizer made of SiC. Thus, the estimated tritium concentration in the hydrogen product for the conservative analytical condition ranged from 3.4 × 10?3 Bq/cm3 at STP (38 Bq/g-H2) to 0.18 Bq/cm3 at STP (2,000 Bq/g-H2). By considering the tritium retained by core graphite and the reduction in permeation rate by an oxide film on the heat transfer tube of the IHX and the HI decomposer, the tritium concentration in the hydrogen product decreased to the range from 3.3 × 10?5 Bq/cm3 at STP (0.36 Bq/g-H2) to 5.6 × 10?3 Bq/cm3 at STP (63 Bq/g-H2), which were smaller than those for the conservative analytical condition by factors of about 3.2 × 10?2 and 9.6 × 10?3, respectively. The effectof the helium flow rate in the helium purification system on the tritium concentration in the hydrogen product was also evaluated.  相似文献   

5.
通过对10 MW高温气冷堆氦气透平发电装置(HTR-10GT)的堆芯、热交换器和透平压气机组等主要设备的数学建模和程序编制,初步建立起了一套模拟该装置瞬态特性的仿真程序.通过对该装置于5s时刻堆内引入0.1$阶跃正反应性引发的紧急停堆事故的瞬态模拟,初步验证了该装置紧急停堆预案设置的安全性和合理性,证明了旁路快开阀的设...  相似文献   

6.
In the framework of a large Research and Development programme devoted to High Temperature Reactors (HTR) and set up in the CEA from 2000 on, we will address ourselves to the issue of coated fuel performance and design. Although HTR fuel main features have been established for a long time, we need today to reassess the fuel design to make sure that it meets the requirements linked to the most recent projects of High Temperature Reactors. Thus, in collaboration with Framatome and in connection with the Gas Turbine - Modular Helium Reactor (GT-MHR) international project, we are planning to perform parametric thermal and mechanical studies, regarding different particle design options (kernel diameter, layers composition and thickness) and seeking optima concerning particle leak tightness and fission product retention. But to initiate such studies, we have first of all to define the design bases and the requirements for HTR fuel, in terms of kernel composition (fissile element, oxide stoechiometry, enrichment), particle and compact geometry (dimensions, particle volume fraction in the graphite matrix), power density, cooling gas temperature and irradiation conditions (burnup, fast fluence).  相似文献   

7.
This paper describes experiences and present status of research and development works for the high temperature gas-cooled reactor (HTGR) fuel in Japan. Recently, Very High Temperature Reactor (VHTR) is evaluated highly worldwide, and is a principal candidate for the Generation IV reactor systems. In Japan, HTGR fuel fabrication technologies have been developed through the High Temperature Engineering Test Reactor (HTTR) project in Japan Atomic Energy Agency since 1960’s. In total about 2 tons of uranium of the HTTR fuel has been fabricated successfully and its excellent quality has been confirmed through the long-term high temperature operation. Based on the HTTR fuel technologies, SiC TRISO fuel has been newly developed for burnup extension targeted VHTR. For ZrC-TRISO coated fuel as an advanced fuel designs, R&Ds for fabrication and inspection have been carried out in JAEA. The irradiation with the Japanese uniform stoichiometric ZrC coating has been completed in the cooperation with Oak Ridge National Laboratory of the United States.  相似文献   

8.
Hydrogen production by high temperature electrolysis with nuclear reactor   总被引:1,自引:0,他引:1  
High Temperature Electrolysis (HTE) is a promising method because its most parts consist of environmentally sound and common materials. Hydrogen production efficiency of HTE was evaluated about the process coupling with high temperature gas cooled reactor. This process can be expected to accomplish over 53% hydrogen production efficiency at HTE operating temperature of 800 °C. As a demonstration of hydrogen production by HTE, a unit housing 15 tubular cells, where yttria-stabilized zirconia (YSZ) was used as electrolyte, was constructed, and accomplished 130 NL/h hydrogen production. In this experiment, measured hydrogen production rate has good agreement with calculated hydrogen production rate based on applied current. To design and construct large amount of hydrogen production unit, it is important to predict the thermal and electrochemical features of the unit. To predict them, the simulation technology has been developed. From the comparison between single tubular cell experimental result and simulation result, good agreement based on current–voltage characteristic was acquired.  相似文献   

9.
高温气冷堆氦气轮机基本特性研究   总被引:3,自引:0,他引:3  
高温气冷堆氦气轮机循环被认为是将来核能发电领域中最有潜力的方案之一。首先对高温堆氦气轮机循环进行分析和优化 ,然后着重从热力学和气体动力学角度研究氦气轮机的基本特性。结果表明 ,氦气轮机有两个主要设计特点不同于通常的燃气轮机 :一个是叶片级数多 ;另一个是叶片高度低 ,这些特性分别由氦气的物性和闭式循环的高压所导致。  相似文献   

10.
仿真系统对10 MW高温气冷堆的堆芯、主回路系统和蒸汽发生器等部件进行分析计算,模拟稳态和瞬态过程。采用虚拟场景技术,按高温气冷堆的实际结构建立三维虚拟场景,用户可在虚拟场景中漫游观测,实时查看仿真计算状态;同时可对仿真数据结果进行分析并以二维、三维图形显示。该仿真系统不仅对高温气冷堆的工程设计、安全分析和人员培训有重要作用,且可以对HTR-10主控室的操作人员进行现场支持及各项研究提供帮助。  相似文献   

11.
在深入分析相关领域研究发展状况的基础上,提出了具有较好技术可行性的聚变高温制氢反应堆概念(称之为FDS-Ⅲ),包括具有先进等离子体物理和技术水平的聚变堆芯、先进高温锂铅包层(HTL)、可减少热流分布密度的"垂直靶板"偏滤器以及相应的功率转换系统。尤其是提出了HTL包层新概念,其特点是选用技术基础相对成熟的低活化铁素体/马氏体钢作结构材料,在锂铅流道中使用可耐高温的多层流道插件,实现约1000℃的出口温度,可应用于制氢。初步性能分析表明FDS-Ⅲ制氢堆及其包层概念具有较好的技术可行性。  相似文献   

12.
This control rod drive is developed for HTR-10 high temperature gas cooled test reactor.The stepmotor is prefered to improve positioning of the control rod and the scram behavior.The preliminary test in 1600170 ambient temperature shows that the selected stepmotor and transmission system can meet the main operation function requirements of HTR-10.  相似文献   

13.
介绍了高温气冷堆新燃料运输货包严重撞击事故的仿真计算分析方法。根据实际货包结构及运输条件,确定了分析的严重撞击事故景象。通过有限元法计算分析了货包在不同姿态、不同速度下的碰撞结果,给出了容器不同部分及所装载的燃料组件的损坏情况。在此基础上,计算了严重事故景象下有效增殖因子keff。  相似文献   

14.
聚变制氢堆高温液态包层热工水力学新概念研究   总被引:2,自引:2,他引:0  
在深入分析聚变堆包层设计要求和目前技术发展水平的基础上,根据热化学工艺制氢需要高温热的要求,提出了一个基于技术相对成熟的低活化铁素体/马氏体钢作为主要结构材料、高压氦气与液态LiPb合金作为冷却剂、具有创新性“多层流道插件”结构方案以获得高温热能的包层热工水力学概念,建立了热工水力学模型,在利用有限元数值模拟程序进行模拟计算的基础上分析了这种新概念包层的可行性。  相似文献   

15.
介绍了反应堆控制棒驱动机构(CRDM)模拟负载装置的设计原理和方法,研制出了一种新型的模拟负载系统,用来模拟反应堆棒控系统对控制棒的控制过程。对设计的模拟负载系统进行了功能性试验和性能参数测试,并与实际运行系统进行比较后,发现该系统达到了各项功能控制要求,且性能稳定可靠,模拟负载的电磁线圈散热性能与负载特性良好,各项性能指标达到了设计要求。  相似文献   

16.
A new concept of Small-sized high temperature reactor (MHR-50) has been investigated toward the earliest commercialization in near future. Features of the MHR-50 are further different from the conventional light water reactors, and the MHR-50 is characterized by high passive safety, high thermal efficiency and smooth operability. When we selected plant basic parameters, we considered minimization of construction unit cost including R&D and of plant construction period as important issues. In the present study, the plant concept of the MHR-50 has been developed based on the above design philosophy.  相似文献   

17.
Most materials can be easily corroded or ineffective in carbonaceous atmospheres at high temperatures in the reactor core of the high temperature gas-cooled reactor (HTGR). To solve the problem, a material performance test apparatus was built to provide reliable materials and technical support for relevant experiments of the HTGR. The apparatus uses a center high-purity graphite heater and surrounding thermal insulating layers made of carbon fiber felt to form a strong carbon reducing atmosphere inside the apparatus. Specially designed tungsten rhenium thermocouples which can endure high temperatures in carbonaceous atmospheres are used to control the temperature field. A typical experimental process was analyzed in the paper, which lasted 76 hours including seven stages. Experimental results showed the test apparatus could completely simulate the carbon reduction atmosphere and high temperature environment the same as that confronted in the real reactor and the performance of screened materials had been successfully tested and verified. Test temperature in the apparatus could be elevated up to 1600℃, which covered the whole temperature range of the normal operation and accident condition of HTGR and could fully meet the test reauirements of materials used in the reactor.  相似文献   

18.
A design concept for a high temperature gas-cooled reactor without the possibility of a prompt supercritical accident has been proposed by coupling the use of particle-type burnable poison (BP) and criticality control by the core temperature. The combinations of two different BPs, B4C and Gd2O3 particles and B4C and CdO particles, with the proper particle sizes and the appropriate volume ratio, showed excellent performance in controlling excess reactivity and flattening the reactivity swing. To maintain reactivity at a lower level than the prompt critical state, the reactor was designed to operate in a subcritical mode for a burnup period or for the whole operation cycle. Under subcritical operation during the partial burnup period, the core temperature had to be lowered by at least 164 K for the loading of B4C + Gd2O3 particles and by at least 178 K for the B4C + CdO particles, which in turn dropped the thermal efficiency from 48% to 42.26% and 41.77%, respectively. On the other hand, under full subcritical operation, a greater decrease of core temperature was required. Remarkable decreases in the core temperatures, approximately 347 K for the B4C + Gd2O3 case and approximately 280 K for the B4C + CdO case, resulted in the drop of thermal efficiency to only 35.9% and 38.2%, respectively. Therefore, the relative importance of the increase in passive safety and the decrease in thermal efficiency must be considered with regard to their importance in nuclear reactor design.  相似文献   

19.
高温气冷堆氦气透平直接循环发电技术进展   总被引:3,自引:0,他引:3  
李勇  张作义 《核动力工程》1999,20(2):159-164
模块式高温气冷堆是一种先进的、具有固有安全性的新型反应堆,其冷却剂氦气的出口温度可高达950℃,可以采用气体透平发电技术,以提高发电效率。美国和南非分别提出了两种高温气冷堆氦气透平直接循环发电方案。他们所使用的氦气透平技术主要基于现在的重工业燃气透平技术和航空发动机技术。本文介绍了这两种技术的区别及氦气透平机设计制造中存在的问题。同时认为由于气体透平的效率比蒸汽透平高得多,所以氦气透平直接循环发电  相似文献   

20.
Leak rate calculation is very important for Leak Before Break (LBB) analysis. Helium is used as coolant in high temperature gas-cooled reactor (HTGR). Therefore the flows in the cracks of HTGR vessels and pipes are single phase, which are different from the two phase critical flows in the cracks of water reactors. In the present paper, simple leak rate calculation formulae for compressible laminar and turbulent flows in HTGR cracks are introduced. The velocity and pressure distributions in cracks as well as the leak rates are calculated using the formulae. Numerical simulations are also conducted for compressible laminar, turbulent and critical flows with different crack widths and depths. The results of the numerical simulation and theoretical formulae are compared with experimental data. The comparison shows that both the simple theoretical formulae and the numerical simulation can achieve good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号