首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
1. Blood vessel tone is determined both by smooth muscle and endothelial functions. In coronary arteries taken from rat (Fisher-Lewis) cardiac transplanted hearts, the inducible form of NOS (iNOS) in smooth muscle is more active, while acetylcholine-induced nitric oxide production in the endothelium is greatly diminished. This causes a greatly reduced myogenic constriction, in pressurized septal arteries taken from immunologically challenged transplanted hearts. 2. The sarcoplasmic reticulum (SR) of smooth muscle and the endoplasmic reticulum (ER) of endothelial cells sequester Ca2+ from the cytoplasm. This reduces the intracellular concentration of free Ca2+, which is necessary for the activation of cellular processes. The release of Ca2+ from internal stores occurs through ryanodine and IP3 recoptors located on the SR membrane. 3. The superficial SR/ER also interacts with ion exchangers and pumps in the plasma membrane. This allows for the superficial SR/ER to function in Ca2+ extrusion; for example, inhibition of the SR/ER Ca(2+)-ATPase (SERCA) partially inhibits the rate of loss Ca2+ from the cell. Recent data suggest that the SR Ca(2+)-ATPase and the Na(+)-Ca2+ exchanger of smooth muscle cells function in series; that is, Ca2+ uptake by the SR followed by release towards the exchanger to mediate extrusion. This interaction between the SERCA of the superficial SR and ion exchangers and pumps creates intracellular Ca2+ gradients. 4. The SERCA of the superficial, peripherally distributed SR/ER also serves to regulate Ca2+ entry from the extracellular space. This occurs in part by inhibition of the superficial buffer barrier function of the SR as well as by depletion of stimulated Ca2+ entry. 5. Ca2+ entry is also regulated in endothelial and smooth muscle cells by the membrane potential. Membrane hyperpolarization increases the driving force for Ca2+ entry into endothelial cells, which lack voltage-gated Ca2+ channels, and reduces open state probability of voltage-gated Ca2+ channels in vascular smooth muscle cells. The two cell types have electrical contact and interact in a dynamic manner to regulate blood vessel diameter.  相似文献   

2.
Circular smooth muscle strips isolated from cat gastric fundus were studied in order to understand whether the sarcoplasmic reticulum (SR) and SR Ca2+-ATPase could play a role in the regulation of the muscle tone. Cyclopiazonic acid (CPA), a specific inhibitor of SR Ca2+-ATPase, caused a significant and sustained increase in muscle tone, depending on the presence of extracellular Ca2+. Nifedipine and cinnarizin only partially suppressed the CPA-induced tonic contraction. Bay K 8644 antagonized the relaxant effect of nifedipine in CPA-contracted fundus. Nitric-oxide-releasing agents sodium nitroprusside and 3-morpholino-sydnonimine completely suppressed the CPA-induced tonic contraction. The blockers of Ca2+-activated K+ channels, tetraethylammonium, charybdotoxin and/or apamin, decreased the contractile effect of CPA. Vanadate increased the tone but did not change significantly the effect of CPA. CPA exerted its contractile effect even when Ca2+ influx was triggered through the Na+/Ca2+ exchanger and the other Ca2+ entry pathways were blocked. Thapsigargin, another specific SR Ca2+-ATPase inhibitor, also increased the muscle tone. The effect of thapsigargin was completely suppressed by sodium nitroprusside and 3-morpholino-sydnonimine and partially by nifedipine. In conclusion, under conditions when the SR Ca2+-ATPase is inhibited, the tissue develops a strong tonic contraction and a large part of this is mediated by Ca2+ influx presumably via nifedipine-sensitive Ca2+ channels. This study suggests the important role of SR Ca2+-ATPase in the modulation of the muscle tone and the function of SR as a "buffer barrier" to Ca2+ entry in the cat gastric fundus smooth muscle.  相似文献   

3.
Local calcium transients ('Ca2+ sparks') are thought to be elementary Ca2+ signals in heart, skeletal and smooth muscle cells. Ca2+ sparks result from the opening of a single, or the coordinated opening of many, tightly clustered ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). In arterial smooth muscle, Ca2+ sparks appear to be involved in opposing the tonic contraction of the blood vessel. Intravascular pressure causes a graded membrane potential depolarization to approximately -40 mV, an elevation of arterial wall [Ca2+]i and contraction ('myogenic tone') of arteries. Ca2+ sparks activate calcium-sensitive K+ (KCa) channels in the sarcolemmal membrane to cause membrane hyperpolarization, which opposes the pressure induced depolarization. Thus, inhibition of Ca2+ sparks by ryanodine, or of KCa channels by iberiotoxin, leads to membrane depolarization, activation of L-type voltage-gated Ca2+ channels, and vasoconstriction. Conversely, activation of Ca2+ sparks can lead to vasodilation through activation of KCa channels. Our recent work is aimed at studying the properties and roles of Ca2+ sparks in the regulation of arterial smooth muscle function. The modulation of Ca2+ spark frequency and amplitude by membrane potential, cyclic nucleotides and protein kinase C will be explored. The role of local Ca2+ entry through voltage-dependent Ca2+ channels in the regulation of Ca2+ spark properties will also be examined. Finally, using functional evidence from cardiac myocytes, and histological evidence from smooth muscle, we shall explore whether Ca2+ channels, RyR channels, and KCa channels function as a coupled unit, through Ca2+ and voltage, to regulate arterial smooth muscle membrane potential and vascular tone.  相似文献   

4.
A characteristic of vascular smooth muscle cell morphology is a close apposition of its peripheral sarcoplasmic reticulum (SR) with the sarcolomma; this arrangement gives rise to important functional interactions whereby the peripheral SR regulates Ca2+ influx and vascular tone. We review here the key evidence supporting the following aspects of SR-sarcolemma interactions while establishing a conceptual framework encompassing (i) the SR ultrastructure and functions, (ii) the integration of the sarcolemmal Na+-Ca2+ exchanger and the peripheral SR in the mediation of a bidirectional Ca2+ exchange between the peripheral SR and the extracellular space, (iii) the existence of a higher myoplasmic free Ca2+ concentration [Ca2+]myo in the subsarcolemmal space formed between the sarcolemma and the peripheral SR relative to the [Ca2+]myo of the inner myoplasm in the resting smooth muscle cell, (iv) the division of the subsarcolemmal space into functional microdomains, (v) the existence of spontaneous localized bursts of Ca2+ release from the peripheral SR (Ca2+ sparks) towards the sarcolemma, (vi) the physiological triggering of nonlocalized Ca2+ release from the peripheral SR by Ca2+ influx (Ca2+-induced Ca2+ release), and (vii) capacitative Ca2+ entry in vascular smooth muscle. We present an overview of the physiological and pathological implications of these interactions.  相似文献   

5.
The past years have seen some significant advances in our understanding of the functional and molecular properties of voltage-dependent Ca2+ channels in arterial smooth muscle. Molecular cloning and expression studies together with experiments on native voltage-dependent Ca2+ channels revealed that these channels are built upon a molecular structure with properties appropriate to function as the main source for Ca2+ entry into arterial smooth muscle cells. This Ca2+ entry regulates intracellular free Ca2+, and thereby arterial tone. We summarize several avenues of recent research that should provide significant insights into the functioning of voltage-dependent Ca2+ channels under conditions that occur in arterial smooth muscle. These experiments have identified important features of voltage-dependent Ca2+ channels, including the steep steady-state voltage-dependence of the channel open probability at steady physiological membrane potentials between -60 and -30 mV, and a relatively high permeation rate at physiological Ca2+ concentrations, being about one million Ca2+ ions/s at -50 mV. This calcium permeation rate seems to be a feature of the pore-forming Ca2+ channel alpha1 subunit, since it was identical for native channels and the expressed alpha1 subunit alone. The channel activity is regulated by dihydropyridines, vasoactive hormones and intracellular signaling pathways. While the membrane potential of smooth muscle cells primarily regulates arterial muscle tone through alterations in Ca2+ influx through dihydropyridine-sensitive voltage-dependent ('L-type') Ca2+ channels, the role of these channels in the differentiation and proliferation of vascular smooth muscle cells is less clear. We discuss recent findings suggesting that other Ca2+ permeable ion channels might be important for the control of Ca2+ influx in dedifferentiated vascular smooth muscle cells.  相似文献   

6.
The oncogene bcl-2 encodes a 26-kD protein localized to intracellular membranes, including the ER, mitochondria, and perinuclear membrane, but its mechanism of action is unknown. We have been investigating the hypothesis that Bcl-2 regulates the movement of calcium ions (Ca2+) through the ER membrane. Earlier findings in this laboratory indicated that Bcl-2 reduces Ca2+ efflux from the ER lumen in WEHI7.2 lymphoma cells treated with the Ca2+-ATPase inhibitor thapsigargin (TG) but does not prevent capacitative entry of extracellular calcium. In this report, we show that sustained elevation of cytosolic Ca2+ due to capacitative entry is not required for induction of apoptosis by TG, suggesting that ER calcium pool depletion may trigger apoptosis. Bcl-2 overexpression maintains Ca2+ uptake in the ER of TG-treated cells and prevents a TG-imposed delay in intralumenal processing of the endogenous glycoprotein cathepsin D. Also, Bcl-2 overexpression preserves the ER Ca2+ pool in untreated cells when extracellular Ca2+ is low. However, low extracellular Ca2+ reduces the antiapoptotic action of Bcl-2, suggesting that cytosolic Ca2+ elevation due to capacitative entry may be required for optimal ER pool filling and apoptosis inhibition by Bcl-2. In summary, the findings suggest that Bcl-2 maintains Ca2+ homeostasis within the ER, thereby inhibiting apoptosis induction by TG.  相似文献   

7.
Contraction in smooth muscle is triggered by an increase in cytoplasmic free calcium ([Ca2+]i) which depends on both Ca2+ influx through L-type Ca2+ channels and Ca2+ release from the sarcoplasmic reticulum (SR). Two mechanisms have been shown to be involved in SR Ca2+ release, one is stimulated by Ca2+ and involved ryanodine-sensitive Ca2+-release channels; the other is stimulated by an increase in inositol 1,4,5-trisphosphate (InsP3) generation induced by various mediators and involved InsP3-sensitive Ca2+ release channels. Here, we examined the effects of angiotensin II on [Ca2+]i in single rat portal vein myocytes using both the whole cell patch-clamp method and a laser scanning confocal microscope. Elementary Ca2+ release events (Ca2+ sparks) were obtained spontaneously or in response to L-type Ca2+ channel current activation, and resulted from activation of ryanodine-sensitive Ca2+-release channels in the SR. We show that angiotensin AT1 receptors stimulate Ca2+ sparks through activation of L-type Ca2+ channels without involving InsP3-induced Ca2+ release. This novel transduction pathway may be a common mechanism for vasoconstrictors which do not stimulate generation of chemical second messengers.  相似文献   

8.
The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to histamine have been investigated. Specifically, these experiments were conducted to determine how much external Ca2+ enters the cell through a (capacitative) Ca2+ entry pathway activated as a consequence of intracellular Ca2+ store mobilization, relative to that which enters independently of store depletion via other channels activated by histamine. In Fura-2 loaded cells continued exposure to histamine (10 microM) caused a rapid but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+, only the initial brief transient was observed. In cells previously treated with thapsigargin (100 nM) in Ca(2+)-free medium to deplete the internal Ca2+ stores, histamine caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Re-introduction of external Ca2+ to thapsigargin-treated store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was further increased (P < 0.0002) upon exposure to histamine. The histamine-evoked increase was prevented by the H1-receptor antagonist, mepyramine (2 microM). A comparison was made between store-dependent Ca2+ entry consequent upon store mobilization with histamine in Ca(2+)-free medium and plateau phase Ca2+ entry resulting from stimulation with histamine in Ca(2+)-containing medium. The latter was found to be approximately 3 times greater in magnitude than the former (P < 0.0001) at the same concentration of histamine (10 microM). It is concluded that histamine causes Ca2+ entry not only via a capacitative entry pathway secondary to internal store mobilization, but also causes substantial Ca2+ entry through other pathways.  相似文献   

9.
Delta9-tetrahydrocannabinol induces [Ca2+]i increases in DDT1MF-2 smooth muscle cells. Both Ca2+ entry and release from intracellular Ca2+ stores were concentration dependently activated. The Ca2+ entry component contributed most to the increases in [Ca2+]i. Stimulation with delta9-tetrahydrocannabinol after functional downregulation of intracellular Ca2+ stores by longterm thapsigargin treatment, still induced a major Ca2+ entry and a minor Ca2+ release component. Thapsigargin sensitive influx and release were selectively inhibited by the cannabinoid CB1 receptor antagonist SR141716A. No effects on [Ca2+]i were obtained after stimulation with the CB2 receptor agonist palmitoylethanolamide. This study is the first demonstration of (1) Ca2+ release from thapsigargin sensitive intracellular stores and capacitative Ca2+ entry via CB1 receptor stimulation and of (2) an additional delta9-tetrahydrocannabinol induced thapsigargin insensitive component, mainly representing Ca2+ influx which is neither mediated by CB1 nor CB2 receptor stimulation.  相似文献   

10.
Despite the fact that Ca2+ transport into the sarcoplasmic reticulum (SR) of muscle cells is electrogenic, a potential difference is not maintained across the SR membrane. To achieve electroneutrality, compensatory charge movement must occur during Ca2+ uptake. To examine the role of Cl- in this charge movement in smooth muscle cells, Ca2+ transport into the SR of saponin-permeabilized smooth muscle cells was measured in the presence of various Cl- channel blockers or when I-, Br-, or SO42- was substituted for Cl-. Calcium uptake was inhibited in a dose-dependent manner by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and by indanyloxyacetic acid 94 (R(+)-IAA-94), but not by niflumic acid or 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Smooth muscle SR Ca2+ uptake was also partially inhibited by the substitution of SO42- for Cl-, but not when Cl- was replaced by I- or Br-. Neither NPPB nor R(+)-IAA-94 inhibited Ca2+ uptake into cardiac muscle SR vesicles at concentrations that maximally inhibited uptake in smooth muscle cells. These results indicate that Cl- movement is important for charge compensation in smooth muscle cells and that the Cl- channel or channels involved are different in smooth and cardiac muscle cells.  相似文献   

11.
Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ mobilization leads to depletion of the endoplasmic reticulum (ER) and an increase in Ca2+ entry. We show here for the gonadotroph, an excitable endocrine cell, that sensing of ER Ca2+ content can occur without the Ca2+ release-activated Ca2+ current (Icrac), but rather through the coupling of IP3-induced Ca2+ oscillations to plasma membrane voltage spikes that gate Ca2+ entry. Thus we demonstrate that capacitative Ca2+ entry is accomplished through Ca(2+)-controlled Ca2+ entry. We develop a comprehensive model, with parameter values constrained by available experimental data, to simulate the spatiotemporal behavior of agonist-induced Ca2+ signals in both the cytosol and ER lumen of gonadotrophs. The model combines two previously developed models, one for ER-mediated Ca2+ oscillations and another for plasma membrane potential-driven Ca2+ oscillations. Simulations show agreement with existing experimental records of store content, cytosolic Ca2+ concentration ([Ca2+]i), and electrical activity, and make a variety of new, experimentally testable predictions. In particular, computations with the model suggest that [Ca2+]i in the vicinity of the plasma membrane acts as a messenger for ER content via Ca(2+)-activated K+ channels and Ca2+ pumps in the plasma membrane. We conclude that, in excitable cells that do not express Icrac, [Ca2+]i profiles provide a sensitive mechanism for regulating net calcium flux through the plasma membrane during both store depletion and refilling.  相似文献   

12.
In many cell types, G protein-coupled receptors stimulate a transient Ca2+ release from internal stores followed by a sustained, capacitative Ca2+ entry, which is mediated by store-operated channels (SOCs). Although it is clear that SOCs are activated by depletion of internal Ca2+ stores, the mechanism for this process is not well understood. Previously, we have reported that inhibitors of tyrosine kinase activity block the bradykinin- and thapsigargin-stimulated Ca2+ entry in fibroblasts, suggesting that a tyrosine kinase activity may be involved in relaying the message from the empty internal Ca2+ stores to the plasma membrane Ca2+ channel (Lee, K.-M., Toscas, K., and Villereal, M. L. (1993) J. Biol. Chem. 268, 9945-9948). We also have demonstrated that bradykinin activates the nonreceptor tyrosine kinase c-src (Lee, K.-M., and Villereal, M. L. (1996) Am. J. Physiol. 270, C1430-C1437). We investigated whether c-src plays a role in the regulation of SOCs by monitoring capacitative Ca2+ entry in 3T3-like embryonic fibroblast lines derived from either wild type or src-/src- (Src-) transgenic mice. We report that Ca2+ entry, following store depletion by either bradykinin or thapsigargin, is dramatically lower in Src- fibroblasts than in wild type fibroblasts. The level of capacitative Ca2+ entry in Src- cells is restored to nearly normal levels by transfecting Src- cells with chicken c-src. These data suggest that c-src may play a major role in the regulation of SOCs.  相似文献   

13.
The ability of adenylyl cyclases to be regulated by physiological transitions in Ca2+ provides a key point for integration of cytosolic Ca2+ concentration ([Ca2+]i) and cAMP signaling. Ca2+-sensitive adenylyl cyclases, whether endogenously or heterologously expressed, require Ca2+ entry for their regulation, rather than Ca2+ release from intracellular stores (Chiono, M., Mahey, R., Tate, G., and Cooper, D. M. F. (1995) J. Biol. Chem. 270, 1149-1155; Fagan, K., Mahey, R., and Cooper, D. M. F. (1996) J. Biol. Chem. 271, 12438-12444). The present study compared the regulation by capacitative Ca2+ entry versus ionophore-mediated Ca2+ entry of an endogenously expressed Ca2+-inhibitable adenylyl cyclase in C6-2B cells. Even in the face of a dramatic [Ca2+]i rise generated by ionophore, Ca2+ entry via capacitative Ca2+ entry channels was solely responsible for the regulation of the adenylyl cyclase. Selective efficacy of BAPTA over equal concentrations of EGTA in blunting the regulation of the cyclase by capacitative Ca2+ entry defined the intimacy between the adenylyl cyclase and the capacitative Ca2+ entry sites. This association could not be impaired by disruption of the cytoskeleton by a variety of strategies. These results not only establish an intimate spatial relationship between an endogenously expressed Ca2+-inhibitable adenylyl cyclase with capacitative Ca2+ entry sites but also provide a physiological role for capacitative Ca2+ entry other than store refilling.  相似文献   

14.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

15.
Receptor-mediated and capacitative Ca2+ entry are the primary Ca2+ entry pathways in endothelial cells (ECs). The mechanisms for Ca2+ entry via these pathways have not been fully elucidated. In this study, the effect of low and high external Mg2+ concentrations on these Ca2+ entry pathways was examined in human coronary arterial ECs. External Mg2+ concentration did not affect cytosolic free Mg2+ concentration. After exposure to thrombin in Ca(2+)-free medium, addition of Ca2+ to the medium caused a rise in cytosolic free Ca2+ concentration ([Ca2+]i), indicating thrombin-induced Ca2+ influx. Thrombin-induced Ca2+ influx was inhibited by not only low but also high external Mg2+ concentrations. After depletion of endoplasmic Ca2+ stores by thapsigargin, addition of Ca2+ to the medium induced an increase in [Ca2+]i, indicating capacitative Ca2+ entry. Capacitative entry was found to be accelerated by low external Mg2+ and inhibited by high external Mg2+ concentration. Results suggest that receptor-mediated Ca2+ influx requires external Mg2+ but is inhibited by increased external Mg2+ concentrations and that capacitative Ca2+ entry is reduced by external Mg2+ in human coronary arterial ECs.  相似文献   

16.
Our previous studies showed that early, stage I preneoplastic cells (sup+ I) are highly susceptible to apoptosis, whereas the later, stage II preneoplastic cells (sup- II) are relatively resistant. To examine possible mechanisms that might explain these differences in the regulation of apoptosis, Ca2+ homeostasis was analyzed and comparisons were made between these two Syrian hamster embryo cell lines. The Ca2+ indicator, fura-2, and fluorescent microscopy were used to measure intracellular free calcium concentrations, [Ca2+]i. The results indicated that the [Ca2+]i level in logarithmically growing sup+ I cells (approximately 100 nM) was considerably lower than that observed in sup- II cells (approximately 260 nM). Serum removal resulted in a reduction of [Ca2+]i in the sup+ I cells (approximately 82 nM), whereas the [Ca2+]i level in sup- II cells did not change. Endoplasmic reticulum (ER) calcium levels were determined by measuring thapsigargin-releasable Ca2+. Reduced ER calcium was consistently observed in cells induced to undergo apoptosis. Specifically, thapsigargin-releasable Ca2+ was greatly reduced in sup+ I cells (45 nM) as compared to sup- II cells (190 nNM) after 4 h in low serum. When sup- II cells were placed under conditions that resulted in apoptosis (thapsigargin or okadaic acid), decreased ER calcium was observed. To determine whether reduced ER calcium had a causative effect in apoptosis, ER calcium levels were exogenously increased in sup+ I cells by raising extracellular Ca2+ to 3 mM; ER calcium levels were maintained, and apoptosis was blocked. Studies were performed to determined whether the decrease in ER calcium could be attributed to reduced Ca2+ influx at the plasma membrane. To measure directly whether Ca2+ entry was decreased in sup+ I cells in 0.2% serum, Mn2+ uptake was used to monitor Ca2+ influx. The data show that in low serum, the rate of thapsigargin-induced Mn2+ entry in sup+ I cells was approximately 50% lower than that of sup- II cells, demonstrating that capacitative entry is reduced in sup+ I cells. In further support of this hypothesis, thapsigargin-treated sup+ I cells (0.2% serum) showed decreased Ca2+ entry upon raising extracellular Ca2+ from 0 to 2 mM. We report the novel finding that early preneoplastic cells, which exhibit a high propensity to undergo apoptosis, have decreased calcium entry at the plasma membrane, resulting in decreased ER calcium pools. This study provides new insight into mechanisms that can be involved in the regulation/dysregulation of apoptosis during neoplastic progression. Furthermore, the data imply that preneoplastic cells, which have developed a mechanism to maintain ER calcium, would be less susceptible to apoptosis and would thus have an increased potential for becoming transformed.  相似文献   

17.
The effects of the phospholipase C (PLC) inhibitor U73122 on intracellular calcium levels ([Ca2+]i) were studied in MDCK cells. U73122 elevated [Ca2+]i dose-dependently. Ca2+ influx contributed to 75% of 20 microM U73122-induced Ca2+ signals. U73122 pretreatment abolished the [Ca2+]i transients evoked by ATP and bradykinin, suggesting that U73122 inhibited PLC. The Ca2+ signals among individual cells varied considerably. The internal Ca2+ source for the U73122 response was the endoplasmic reticulum (ER) since the response was abolished by thapsigargin. The depletion of the ER Ca2+ store triggered a La3+-sensitive capacitative Ca2+ entry. Independently of the internal release and capacitative Ca2 entry, U73122 directly evoked Ca2+ influx through a La3+-insensitive pathway. The U73122 response was augmented by pretreatment of carbonylcyanide m-chlorophynylhydrozone (CCCP), but not by Na+ removal, implicating that mitochondria contributed significantly in buffering the Ca2+ signal, and that efflux via Na+/Ca2+ exchange was insignificant.  相似文献   

18.
This study investigates the contribution of Ca2+ entry via sarcolemmal (SL) Ca2+ channels to the Ca2+ transient and its relationship with sarcoplasmic reticulum (SR) Ca2+ content during steady-state contraction in guinea pig and rat ventricular myocytes. The action potential clamp technique was used to obtain physiologically relevant changes in membrane potential. A method is shown that allows calculation of Ca2+ entry through the SL Ca2+ channels by measuring Cd(2+)-sensitive current during the whole cardiac cycle. SR Ca2+ content was calculated from caffeine-induced transient inward current. In guinea pig cardiac myocytes stimulated at 0.5 Hz and 0.2 Hz, Ca2+ entry through SL Ca2+ channels during a cardiac cycle was approximately 30% and approximately 50%, respectively, of the SR Ca2+ content. In rat myocytes Ca2+ entry via SL Ca2+ channels at 0.5 Hz was approximately 3.5% of the SR Ca2+ content. In the presence of 500 nM thapsigargin Ca2+ entry via SL Ca2+ channels in guinea pig cardiac cells was 39% greater than in controls, suggesting a larger contribution of this mechanism to the Ca2+ transient when the SR is depleted of Ca2+. These results provide quantitative support to the understanding of the relationship between Ca2+ entry and the SR Ca2+ content and may help to explain differences in the Ca2+ handling observed in different species.  相似文献   

19.
Agonist-activated Ca2+ entry is important in many biological responses such as secretion and cell growth(1,2). In nonexcitable cells which have no voltage-operated Ca2+ channels (VOCC), agonist-receptor interaction can trigger Ca2+ entry across the plasmalemma via several entry pathways(1-3) (Fig 1): (A) channels which are intrinsic structures of the receptor (receptor-operated channels), (B) channels which are coupled to receptors via a G-protein (G-protein-operated channels), (C) channels which are activated by some second messengers (second-messenger-operated channels), and (D) channels which open upon intracellular nonmitochondrial Ca2+ store depletion (Ca2+ release-activated channels) resulting from inositol 1, 4, 5-trisphosphate-induced Ca2+ release or inhibition of Ca2+ re-uptake (see next section). Ca2+ entry via the 4th type of channel, also known as "capacitative Ca2+ entry" (CCE)[4], has aroused much interest in the past decade because of its intriguing nature as retrograde signalling. In this brief review, we present the evidence for and the possible biochemical processes involved in CCE. We also discuss the use of 2 novel Ca2+ entry blockers: tetrandrine and SK&F 96365. Emphasis will be put on the human leukemic HL-60 cell line, a popular cell system for intracellular Ca2+ homeostasis studies and also a model the signal transduction of which we have been investigating during the past few years.  相似文献   

20.
Endothelial cells (ECs) provide an ideal surface for blood flow. They inhibit the initiation of blood-clotting, but can also under certain conditions activate this process. ECs influence thrombolysis as well as thrombogenesis. They are "antigen-presenting cells" and play a key role in angiogenesis. In addition, ECs control the permeability of the barrier between bloodvessels and interstitium. One of their most important functions is the regulation of the diameter of the blood vessels and their adaptation to the demanded hemodynamic needs. The production and release of diverse compounds, which interfere with different neighboured target cells, initiate this plethora of functions. Ca2+ signals in endothelial cells play the key role in the release of NO, prostacyclin (PGI2), platelet activating factor (PAF), von Willebrand factor (vWF), tissue plasminogen activator (tPA) and tissue factor pathway inhibitor (TFPI). Changes in the intracellular Ca2+ concentration ([Ca2+]i) are determined by release from intracellular stores and entry through the plasma membrane. The diversity of Ca2+ entry pathways and mechanisms of their control are described. At least two different types of Ca2+ entry channels exist: 1. typical highly Ca2+ selective ion channels which might be activated by depletion of intracellular Ca2+ stores (Ca2+ release-activated Ca2+ channels, CRAC), and 2. Non-selective Ca2+ permeable cation channels (NSC). The latter shares many features with an NSC induced by expression of the protein TRPC3. These channels are only weakly operated by store depletion and require a permissive Ca2+ and Ins(1,4,5)P3 concentration in the cytosol. CRAC channels are possible indirectly involved in Ca2+ entry during mechano-stimulation of ECs. After activation of these entry channels, influx of Ca2+ depends on the driving force. The following ion channels play a pivotal role in regulation of the driving force for Ca2+ entry: an inwardly rectifying K+ channel, identified as Kir2.1, a large-conductance, Ca2+ activated K+ channel (hslo) and at least two Cl- channels (a volume regulated Cl- channel, VRAC, and a Ca2+ activated Cl- channel, CaCC). It will be explained how these ion channels interact in the regulation of the long-lasting (plateau-type) increase in [Ca2+]i which mainly controls NO-synthesis and release. Furthermore, it will be demonstrated that Ca2+ oscillations depend on intracellular events rather than Ca2+ entry from the extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号