首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal–NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water.  相似文献   

2.
Dissolved air flotation (DAF) performance with two different naturally occurring cyanobacterial morphologies was investigated with respect to the biomass removal efficiency, the toxin release to water and the coagulant demand by different water background natural organic matter (NOM). Coagulation (C)/Flocculation (F)/DAF bench-scale experiments (2 min coagulation at 380 s−1 with polyaluminium chloride (0.5-4 mg/L Al2O3, the dose depending on the water NOM content); 8 min flocculation at 70 s−1; 8 min DAF with 5 bar relative pressure and 8% pressurised recycle) were performed with single cells of Microcystis aeruginosa and Planktothrix rubescens filaments spiked in synthetic waters with different NOM contents (hydrophobic vs. hydrophilic NOM; moderate (2-3 mgC/L) vs. moderate-high concentration (ca. 6 mgC/L)). For both morphologies, the results show no apparent cyanobacterial damage (since the water quality did not degrade in dissolved microcystins and the removal of intracellular microcystins matched the removal of chlorophyll a) and high biomass removal efficiencies (93-99% for cells and 92-98% for filaments) provided optimal coagulant dose for chlorophyll a removal was ensured. Charge neutralisation by the polyaluminium chloride was the main coagulation mechanism of the M. aeruginosa cells and most likely also of the P. rubescens filaments. The specific coagulant demand was severely affected by NOM hydrophobicity, hydrophobic NOM (with a specific UV254nm absorbance, SUVA, above 4 L/(m mgC)) requiring ca. the triple of hydrophilic NOM (SUVA below 3 L/(m mgC)), i.e. 0.7 vs. 0.2-0.3 mg Al2O3/mg DOC.  相似文献   

3.
The stability of nanoparticles in aquatic environment plays an important role in determining their environmental implication and potential risk to human health. This research studied the impact of natural organic matter (NOM) and divalent cations (Ca2+) on the stability of engineered metal oxide nanoparticles (e.g. ZnO, NiO, TiO2, Fe2O3 and SiO2). When nanoparticles were present in neutral water, a relatively weak electrolyte concentration (0.01 M KCl) could result in their aggregation; however, with the addition of 1 mg/L NOM, the negative surface charge of nanoparticles increased significantly and therefore their propensity to aggregate is reduced. 4 mg/L NOM stabilized most nanoparticles by producing −30 mV or higher zeta potentials. On the other hand, the negative charge that NOM imparted to nanoparticles could be neutralized by divalent cations (calcium ions). 0.04 M-0.06 M Ca2+ induced the aggregation of NOM-coated nanoparticles. It should be noted that among all the studied nanoparticles, SiO2 exhibited the unique stability due to its low NOM adsorption capacity and small Hamaker constant. SiO2 remained stable no matter whether the solution contained NOM or Ca2+.  相似文献   

4.
Siva Sarathy 《Water research》2010,44(14):4087-6140
The advanced oxidation process utilizing ultraviolet and hydrogen peroxide (UV/H2O2) is currently applied in commercial drinking water applications for the removal of various organic pollutants. Natural organic matter (NOM) present in the source water can also be oxidized and undergo changes at the fluence and H2O2 concentrations applied in commercial drinking water UV/H2O2 applications (fluences less than 2000 mJ cm−2, initial H2O2 concentrations less than 15 mg L−1). In this study, the impact of UV/H2O2 on NOM’s aromaticity, hydrophobicity, and potential to form trihalomethanes (THMs) and haloacetic acids (HAAs) was investigated for raw surface water and the same water with the very hydrophobic acid (VHA) fraction of NOM removed. During UV/H2O2 treatments, NOM in the raw surface water was partially oxidized to less aromatic and hydrophobic characteristics, but was not mineralized, confirming findings from past research. Below fluences of 1500 mJ cm−2 UV/H2O2 treatment of the raw water did not lead to reduction in the formation potential of THMs. The formation potential of HAAs was reduced at a fluence of 500 mJ cm−2 with only small additional reductions as fluence further increased. For the water from which the VHA fraction was removed, UV/H2O2 treatment led to mineralization of NOM suggesting that, when coupled with a pre-treatment capable of removing the VHA fraction, UV/H2O2 could achieve further reductions in NOM. These subsequent reductions in NOM led to continuous reductions in the formation potentials of THMs and HAAs as fluence increased.  相似文献   

5.
A field study was performed in a building complex to investigate the extent and sources of lead (Pb) release in tap water and brass material was found to be the main contributor in the very first draw (250 mL). Based on these results, a pilot installation was built to study Pb leaching from old and new faucets in the presence and absence of a connection to Cu piping. Four water quality conditions were tested: i) no treatment; ii) addition of 0.8 mg P/L of orthophosphate; iii) pH adjustment to 8.4; and iv) adjustment to a higher chloride to sulfate mass ratio (CSMR; ratio from 0.3 to 2.9). Pb concentrations in samples taken from the faucets without treatment ranged from 1 to 52 μg/L, with a mean of 11 μg/L. The addition of orthophosphate @ 0.8 mg P/L (OrthoP) was the most effective treatment for all types of faucets tested. On average, OrthoP reduced mean Pb leaching by 41%, and was especially effective for new double faucets (70%). In the presence of orthophosphates, the relative proportion of particulate Pb (Pbpart) (>0.45 μm) increased from 31% to 54%. However, OrthoP was not efficient to reduce Zn release. The higher CSMR condition was associated with greater dezincification of yellow brass but not of red brass. Corrosion control treatment influenced Pb concentration equilibrium, directly impacting maximal exposure. Significantly higher Pb release (3 fold) was observed for 1 of the 8 faucets connected to Cu exposed to high CSMR water, suggesting the presence of galvanic corrosion.  相似文献   

6.
In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1–25 mA/cm2 and CLR in a range of 12–300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm2) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography.  相似文献   

7.
Tanneru CT  Chellam S 《Water research》2012,46(7):2111-2120
Results from a laboratory-scale study evaluating virus control by a hybrid iron electrocoagulation - microfiltration process revealed only 1.0-1.5 log MS2 bacteriophage reduction even at relatively high iron dosages (∼13 mg/L as Fe) for natural surface water containing moderate natural organic matter (NOM) concentrations (4.5 mg/L dissolved organic carbon, DOC). In contrast, much greater reductions were measured (6.5-log at pH 6.4 and 4-log at pH 7.5) at similar iron dosages for synthetic water that was devoid of NOM. Quantitative agreement with Faraday’s law with 2-electron transfer and speciation with phenanthroline demonstrated electrochemical generation of soluble ferrous iron. Near quantitative extraction of viruses by dissolving flocs formed in synthetic water provided direct evidence of their removal by sorption and enmeshment onto iron hydroxide flocs. In contrast, only approximately 1% of the viruses were associated with the flocs formed in natural water consistent with the measured poor removals. 1-2 logs of virus inactivation were also observed in the electrochemical cell for synthetic water (no NOM) but not for surface water (4.5 mg/L DOC). Sweep flocculation was the dominant destabilization mechanism since the ζ potential did not reach zero even when 6-log virus reductions were achieved. Charge neutralization only played a secondary role since ζ potential → 0 with increasing iron electrocoagulant dosage. Importantly, virus removal from synthetic water decreased when Suwanee River Humic Acid was added. Therefore, NOM present in natural waters appears to reduce the effectiveness of iron electrocoagulation pretreatment to microfiltration for virus control by complexing ferrous ions. This inhibits (i) Fe2+ oxidation, precipitation, and virus destabilization and (ii) virus inactivation through reactive oxygen species intermediates or by direct interactions with Fe2+ ions.  相似文献   

8.
The destruction of the commonly found cyanobacterial toxin, microcystin-LR (MC-LR), in surface waters by UV-C/H2O2 advanced oxidation process (AOP) was studied. Experiments were carried out in a bench scale photochemical apparatus with low pressure mercury vapor germicidal lamps emitting at 253.7 nm. The degradation of MC-LR was a function of UV fluence. A 93.9% removal with an initial MC-LR concentration of 1 μM was achieved with a UV fluence of 80 mJ/cm2 and an initial H2O2 concentration of 882 μM. When increasing the concentration of MC-LR only, the UV fluence-based pseudo-first order reaction rate constant generally decreased, which was probably due to the competition between by-products and MC-LR for hydroxyl radicals. An increase in H2O2 concentration led to higher removal efficiency; however, the effect of HO scavenging by H2O2 became significant for high H2O2 concentrations. The impact of water quality parameters, such as pH, alkalinity and the presence of natural organic matter (NOM), was also studied. Field water samples from Lake Erie, Michigan and St. Johns River, Florida were employed to evaluate the potential application of this process for the degradation of MC-LR. Results showed that the presence of both alkalinity (as 89.6-117.8 mg CaCO3/L) and NOM (as ∼2 to ∼9.5 mg/L TOC) contributed to a significant decrease in the destruction rate of MC-LR. However, a final concentration of MC-LR bellow the guideline value of 1 μg/L was still achievable under current experimental conditions when an initial MC-LR concentration of 2.5 μg/L was spiked into those real water samples.  相似文献   

9.
M Ng  AE Liana  S Liu  M Lim  CW Chow  D Wang  M Drikas  R Amal 《Water research》2012,46(15):4614-4620
In this study, the formulation of a novel polyaluminum chloride-chitosan composite coagulant that improves the coagulation process for natural organic matter (NOM) removal was investigated. The performance of the composite coagulant was tested using two water sources (synthetic and natural water) to develop a better understanding on the behaviour of the composite coagulant. Fourier Transform-Infra red (FT-IR) spectroscopy, ferron analysis and zeta potential studies were performed to characterise the composite coagulant. FT-IR analysis showed that there is an intermolecular interaction between Al species and chitosan molecules, while ferron analysis indicated that the distributions of Ala, Alb, and Alc in PACl-chitosan are different from those in PACl. At a low Al dosage (2.16 mg L−1), a much higher removal of NOM from synthetic water, as evidenced from UV254 and Dissolved Organic Carbon (DOC) measurements, was achieved by the composite coagulants in comparison to that removed by PACl or PACl and chitosan added separately. For natural water from the Myponga Reservoir, both polyaluminum chloride (PACl) and PACl-chitosan composite coagulants demonstrated similar dissolved organic carbon (DOC) percentage removal, whereas PACl-chitosan gave a slight improvement in removing the UV254 absorbing components of NOM.  相似文献   

10.
Natural organic matter (NOM) in water samples from a drinking water treatment train was characterized using fluorescence excitation emission matrices (F-EEMs) and parallel factor analysis (PARAFAC). A seven component PARAFAC model was developed and validated using 147 F-EEMs of water samples from two full-scale water treatment plants. It was found that the fluorescent components have spectral features similar to those previously extracted from F-EEMs of dissolved organic matter (DOM) from diverse aquatic environments. Five of these components are humic-like with a terrestrial, anthropogenic or marine origin, while two are protein-like with fluorescence spectra similar to those of tryptophan-like and tyrosine-like fluorophores. A correlation analysis was carried out for samples of one treatment plant between the maximum fluorescence intensities (Fmax) of the seven PARAFAC components and NOM fractions (humics, building blocks, neutrals, biopolymers and low molecular weight acids) of the same sample obtained using liquid chromatography with organic carbon detection (LC-OCD). There were significant correlations (p < 0.01) between sample DOC concentration, UVA254, and Fmax for the seven PARAFAC components and DOC concentrations of the LC-OCD fractions. Three of the humic-like components showed slightly better predictions of DOC and humic fraction concentrations than UVA254. Tryptophan-like and tyrosine-like components correlated positively with the biopolymer fraction. These results demonstrate that fluorescent components extracted from F-EEMs using PARAFAC could be related to previously defined NOM fractions and that they could provide an alternative tool for evaluating the removal of NOM fractions of interest during water treatment.  相似文献   

11.
Carbamazepine reactivity and fate during chlorination was investigated in this study. From a kinetic standpoint, a third-order reaction (first-order relative to the CBZ concentration and second-order relative to the free chlorine concentration) was observed at neutral and slightly acidic pH, whereas a second-order reaction (first order relative to the CBZ concentration and first order relative to the free chlorine concentration) was noted under alkaline conditions. In order to gain insight into the observed pH-dependence of the reaction order, elementary reactions (i.e. reactions of Cl2, Cl2O, HOCl with CBZ and of ClO with CBZ or of HOCl with the ionized form of CBZ) were highlighted and second order rate constants of each of them were calculated. Close correlations between the experimental and modeled values were obtained under these conditions. Cl2 and Cl2O were the main chlorination agents at neutral and acidic pH. These results indicate that, for a 1 mg/L free chlorine concentration and 1–10 mg/L chloride concentration at pH 7, halflives about 52–69 days can be expected. A low reactivity of chlorine with CBZ could thus occur under the chlorination steps used during water treatment. From a mechanistic viewpoint, several transformation products were observed during carbamazepine chlorination. As previously described for the chlorination of polynuclear aromatic or unsaturated compounds, we proposed monohydroxylated, epoxide, diols or chlorinated alcohol derivatives of CBZ for the chemical structures of these degradation products. Most of these compounds seem to accumulate in solution in the presence of excess chlorine.  相似文献   

12.
Chen J  Xiu Z  Lowry GV  Alvarez PJ 《Water research》2011,45(5):1995-2001
Nano-scale zero-valent iron (NZVI) particles are increasingly used to remediate aquifers contaminated with hazardous oxidized pollutants such as trichloroethylene (TCE). However, the high reduction potential of NZVI can result in toxicity to indigenous bacteria and hinder their participation in the cleanup process. Here, we report on the mitigation of the bactericidal activity of NZVI towards gram-negative Escherichia coli and gram-positive Bacillus subtilis in the presence of Suwannee River humic acids (SRHA), which were used as a model for natural organic matter (NOM). B. subtilis was more tolerant to NZVI (1 g/L) than E. coli in aerobic bicarbonate-buffered medium. SRHA (10 mg/L) significantly mitigated toxicity, and survival rates after 4 h exposure increased to similar levels observed for controls not exposed to NZVI. TEM images showed that the surface of NZVI and E. coli was surrounded by a visible floccus. This decreased the zeta potential of NZVI from −30 to −45 mV and apparently exerted electrosteric hindrance to minimize direct contact with bacteria, which mitigated toxicity. H2 production during anaerobic NZVI corrosion was not significantly hindered by SRHA (p > 0.05), However, NZVI reactivity towards TCE (20 mg/L), assessed by the first-order dechlorination rate coefficient, decreased by 23%. Overall, these results suggest that the presence of NOM offers a tradeoff for NZVI-based remediation, with higher potential for concurrent or sequential bioremediation at the expense of partially inhibited abiotic reactivity with the target contaminant (TCE).  相似文献   

13.
French River water (Nova Scotia, Canada) was separated into six different natural organic matter (NOM) fractions, including hydrophobic acids, bases and neutrals and hydrophilic acids, bases and neutrals. The raw water, as well as each of the NOM fractions were analysed for disinfection by-product (DBP) formation potential before and after advanced oxidation with UV/TiO2 to determine the efficacy of this treatment for the removal of DBP precursors. The UV/TiO2 treatment was carried out with a nanostructured thin film (NSTF), coated with TiO2 which is compared with the use of a TiO2 suspension. For the raw river water, removals of total trihalomethane formation potential (TTHMFP) and total haloacetic acid formation potential (THAA9FP) were found to be approximately 20% and 90%, respectively, with 50 mJ/cm2 UV exposure and 1 mg/L TiO2. For the fractionated samples, approximately 75% of both trihalomethane (THM) and haloacetic acid (HAA) precursors were found to be associated with the hydrophobic acid fraction. For this individual fraction the same UV/TiO2 treatments exhibited approximately 20-25% removal of both TTHMFP and THAA9FP, suggesting that the fractionation process may have affected the treatability of HAA precursors or may have altered the results of the oxidation processes.  相似文献   

14.
Zhang H  Andrews SA 《Water research》2012,46(8):2665-2673
This study investigated the effect of copper corrosion products, including Cu(II), Cu2O, CuO and Cu2(OH)2CO3, on chlorine degradation, HAA formation, and HAA speciation under controlled experimental conditions. Chlorine decay and HAA formation were significantly enhanced in the presence of copper with the extent of copper catalysis being affected by the solution pH and the concentration of copper corrosion products. Accelerated chlorine decay and increased HAA formation were observed at pH 8.6 in the presence of 1.0 mg/L Cu(II) compared with that observed at pH 6.6 and pH 7.6. Further investigation of chlorine decay in the presence of both Suwannee River NOM and Cu(II) indicated that an increased reactivity of NOM with dissolved and/or solid surface-associated Cu(II), rather than chlorine auto-decomposition, was a primary reason for the observed rapid chlorine decay. Copper corrosion solids [Cu2O, CuO, Cu2(OH)2CO3] exhibited catalytic effects on both chlorine decay and HAA formation. Contrary to the results observed when in the absence of copper corrosion products, DCAA formation was consistently predominant over other HAA species in the presence of copper corrosion products, especially at neutral and high pH. This study improves the understanding for water utilities and households regarding chlorine residuals and HAA concentrations in distribution systems, in particular once the water reaches domestic plumbing where copper is widely used.  相似文献   

15.
In full-scale wastewater treatment systems, phosphorus removal typically occurs together with nitrogen removal. Nitrite, an intermediate of both the nitrification and denitrification processes, can accumulate in the reactor. The inhibitory effect of nitrite/free nitrous acid (FNA) on the aerobic metabolism of poly-phosphate accumulating organisms (PAOs) is investigated. A culture highly enriched (90 ± 5%) in Candidatus “Accummulibacter phosphatis”, a well-known PAO, was used to perform a series of batch experiments at various nitrite and pH levels. FNA was found to inhibit all key aerobic metabolic processes performed by PAOs, namely PHA oxidation, phosphate uptake, glycogen replenishment and growth. The inhibitory effect on the anabolic processes (growth, phosphate uptake and glycogen production) was much stronger than that on the catabolic processes (PHA oxidation). 50% inhibition on all anabolic processes occurred at FNA concentrations of approximately 0.5 × 10?3 mg HNO2–N/L (equivalent to 2.0 mg NO2?–N/L at pH 7.0), while full inhibition occurred at FNA concentrations of approximately 6.0 × 10?3 mg HNO2–N. These concentrations could be found in full-scale wastewater treatment systems that achieve nitrogen removal via the nitrite pathway. In comparison, PHA oxidation remained at 40–50% of the highest rate at FNA concentrations in the range 2.0 × 10?3–10.0 × 10?3 mg HNO2–N/L. Interestingly, PAOs were able to reduce nitrite under aerobic conditions (DO ≈ 3 mg/L), with the rate increasing substantially with the FNA concentration. The inhibition on phosphate uptake was found to be reversible.  相似文献   

16.
A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca2+. Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO3-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO3-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO2-N reduction rate was around three times lower than the reduction rate of NO3-N, which led to NO2-N accumulation at high loadings.  相似文献   

17.
H Kawaguchi  Z Li  Y Masuda  K Sato  H Nakagawa 《Water research》2012,46(17):5566-5574
The in situ oil sands production method called steam-assisted gravity drainage (SAGD) reuses process wastewater following treatment. However, the treatment and reuse processes concentrate contaminants in the process water. To determine the concentration and dynamics of inorganic and organic contaminants, makeup water and process water from six process steps were sampled at a facility employing the SAGD process in Alberta, Canada. In the groundwater used for the makeup water, the total dissolved organic carbon (DOC) content was 4 mg/L. This significantly increased to 508 mg/L in the produced water, followed by a gradual increase with successive steps in subsequent water treatments. The concentrations and dynamics of DOC constituents in the process water determined by gas chromatography-mass spectrometry showed that in the produced water, volatile organic compounds (VOCs) such as acetone (33.1 mg/L) and 2-butanone (13.4 mg/L) predominated, and there were significant amounts of phenolic compounds (total 9.8 mg/L) and organic acids including naphthenic acids (NAs) corresponding to the formula CnH2n+ZOX for combinations of n = 4 to 18, Z = 0 and −2, and X = 2 to 4 (53 mg/L) with trace amounts of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene. No organic contaminants, except for saturated fatty acids, were detected in the groundwater. The concentration of DOC in the recycled water was 4.4-fold higher than that in the produced water. Likewise, the total concentrations of phenols and organic acids in the recycled water were 1.7- and 4.5-fold higher than in the produced water, whereas the total concentrations of VOCs and PAHs in the recycled water were reduced by over 80%, suggesting that phenols and organic acids are selectively concentrated in the process water treatment. This comprehensive chemical analysis thus identified organic constituents that were concentrated in the process water and which interfere with subsequent water treatments in the SAGD process.  相似文献   

18.
A study was performed to determine the effect of pH, alkalinity, natural organic matter (NOM) and dissolved oxygen in the performance of nitrogen and fluorine doped TiO2 (NF-TiO2) for the degradation of hepatotoxin microcystin-LR (MC-LR) in synthetic and natural water under visible light irradiation. The initial degradation rate of MC-LR was fastest under acidic conditions (3.50 ± 0.02 × 10−3 μM min−1 at pH 3.0) and decreased to 2.29 ± 0.07 × 10−3 and 0.54 ± 0.02 × 10−3 μM min−1 at pH 5.7 and 7.1, respectively. Attractive forces between the opposite charged MC-LR and NF-TiO2 are likely responsible for the enhancement in the photocatalytic decomposition of MC-LR resulting from increased interfacial adsorption. For carbonate buffered solutions, the photocatalytic activity of NF-TiO2 was reduced when increasing the carbonate concentration up to 150 mg CaCO3 L−1. The scavenging of radical species by the bicarbonate ion at pH 7.1 is discussed. In the presence of NOM, the degradation rates decreased as pH and initial concentration of the NOM increased. The inhibition was higher with fulvic acid than humic acid under alkaline conditions. Oxygenated solution yields higher NF-TiO2 photocatalytic degradation of MC-LR compared to nitrogen sparged solution at pH 5.7. The involvement of specific reactive oxygen species implicated in the photodegradation is proposed. Finally, no significant degradation is observed with various natural waters spiked with MC-LR under visible light (λ > 420 nm) but high removal was achieved with simulated solar light. This study provides a better understanding of the interactions and photocatalytic processes initiated by NF-TiO2 under visible and solar light. The results indicate solar photocatalytic oxidation is a promising technology for the treatment of water contaminated with cyanotoxins.  相似文献   

19.
The energy consumptions of conventional ozonation and the AOPs O3/H2O2 and UV/H2O2 for transformation of organic micropollutants, namely atrazine (ATR), sulfamethoxazole (SMX) and N-nitrosodimethylamine (NDMA) were compared. Three lake waters and a wastewater were assessed. With p-chlorobenzoic acid (pCBA) as a hydroxyl radical (OH) probe compound, we experimentally determined the rate constants of organic matter of the selected waters for their reaction with OH (kOH,DOM), which varied from 2.0 × 104 to 3.5 × 104 L mgC−1 s−1. Based on these data we calculated OH scavenging rates of the various water matrices, which were in the range 6.1-20 × 104 s−1. The varying scavenging rates influenced the required oxidant dose for the same degree of micropollutant transformation. In ozonation, for 90% pCBA transformation in the water with the lowest scavenging rate (lake Zürich water) the required O3 dose was roughly 2.3 mg/L, and in the water with the highest scavenging rate (Dübendorf wastewater) it was 13.2 mg/L, corresponding to an energy consumption of 0.035 and 0.2 kWh/m3, respectively. The use of O3/H2O2 increased the rate of micropollutant transformation and reduced bromate formation by 70%, but the H2O2 production increased the energy requirements by 20-25%. UV/H2O2 efficiently oxidized all examined micropollutants but energy requirements were substantially higher (For 90% pCBA conversion in lake Zürich water, 0.17-0.75 kWh/m3 were required, depending on the optical path length). Energy requirements between ozonation and UV/H2O2 were similar only in the case of NDMA, a compound that reacts slowly with ozone and OH but is transformed efficiently by direct photolysis.  相似文献   

20.
Chloramine has replaced free chorine for secondary disinfection at many water utilities because of disinfection by-product (DBP) regulations. Because chloramination provides a source of ammonia, there is a potential for nitrification when using chloramines. Nitrification in drinking water distribution systems is undesirable and may result in degradation of water quality and subsequent non-compliance with existing regulations. Thus, nitrification control is a major issue and likely to become increasingly important as chloramine use increases. In this study, monochloramine penetration and its effect on nitrifying biofilm activity, viability, and recovery was investigated and evaluated using microelectrodes and confocal laser scanning microscopy (CLSM). Monochloramine was applied to nitrifying biofilm for 24 h at two different chlorine to nitrogen (Cl2:N) mass ratios (4:1 [4.4 mg Cl2/L] or 1:1 Cl2:N [5.3 mg Cl2/L]), resulting in either a low (0.23 mg N/L) or high (4.2 mg N/L) free ammonia concentration. Subsequently, these biofilm samples were allowed to recover without monochloramine and receiving 4.2 mg N/L free ammonia. Under both monochloramine application conditions, monochloramine fully penetrated into the nitrifying biofilm within 24 h. Despite this complete monochloramine penetration, complete viability loss did not occur, and both biofilm samples subsequently recovered aerobic activity when fed only free ammonia. When monochloramine was applied with a low free ammonia concentration, dissolved oxygen (DO) fully penetrated, but with a high free ammonia concentration, complete cessation of aerobic activity (i.e., oxygen utilization) did not occur and subsequent analysis indicated that oxygen consumption still remained near the substratum. During the ammonia only recovery phase, different spatial recoveries were seen in each of the samples, based on oxygen utilization. It appears that the presence of higher free ammonia concentration allowed a larger biomass to remain active during monochloramine application, particularly the organisms deeper within the biofilm, leading to faster recovery in oxygen utilization when monochloramine was removed. These results suggest that limiting the free ammonia concentration during monochloramine application will slow the onset of nitrification episodes by maintaining the biofilm biomass at a state of lower activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号