首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用超临界萃取分离技术对伊朗重质减压渣油按相对分子质量进行了分割。所得伊朗重质减渣馏分按馏分的先后,其平均相对分子质量逐渐增大,H/C原子比逐渐下降,芳香共轭成分含量逐渐升高。对各减渣馏分的油-水界面张力研究表明,伊朗重质减渣馏分具有高的界面活性,随着减渣馏分在油相中质量分数的增大,油-水界面张力显著下降。通过改变减渣馏分的界面吸附状态和吸附量,油相组成、水相中盐的含量及pH值的变化会影响油-水界面张力。  相似文献   

2.
采用剪切界面粘度仪考察了大庆减压渣油超临界馏分(简称大庆减渣馏分)的油-水界面粘度。研究结果表明,大庆减渣馏分油-水界面粘度随馏分的增重、油相中值分质量分数的增加以及水相中盐含量的增加而增大,随剪切速率的增大而降低。大庆减渣馏分中蜡含量多。对馏分的油-水界面粘度的影响大,油-水界面粘度受馏分中界面活性物质(胶质、沥青质)和蜡的共同影响。轻馏分油-水界面粘度随油相中芳烃含量的增加而增大。当油相煤油与苯体积比为1:1时,重馏分油-水界面粘度最大。碱性条件下,馏分油-水界面粘度最低。酸性条件对轻、重馏分的油-水界面粘度的影响不同,随着酸度的升高,轻馏分的油-水界面粘度下降,重馏分的油-水界面粘度上升。  相似文献   

3.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油-水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油-水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油-水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油-水界面粘度有大幅度的增加。Tween40铺展吸附于油-水界面,其油-水界面粘度较大。Span80竖立吸附于油-水界面,其油-水界面粘度较小。Tween40取代减渣馏分铺展吸附于油-水界面,其油-水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油-水界面粘度降低。Span80楔人减渣馏分油-水界面吸附层,共同构成油-水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐减小。  相似文献   

4.
采用双分子类脂膜实验装置研究了大庆减压渣油与伊朗轻质减压渣油馏分的油-水薄液膜的膜电容(膜厚度)、排液-破裂方式、膜稳定时间(膜寿命)。结果表明,减渣馏分越重,分子吸附状态稳定,其油-水薄液膜越厚,膜稳定性越好。减渣馏分油-水薄液膜的排液-破裂有连续排液-破裂方式、“黑洞”排液-破裂方式和逐层破裂排液方式。当馏分越轻、馏分在油相中质量分数越低、表面活性剂加量越多时,以连续排液-破裂方式为主;而馏分越重、馏分在油相中的质量分数越高、表面活性剂加量越少时,以“黑洞”排液-破裂方式和逐层破裂排液方式为主。油相的组成,水相中的酸、碱、盐以及外加表面活性剂对减渣馏分的界面活性、吸附状态、电荷吸附量影响不同,相应的膜电容(膜厚度)和膜稳定时间也不同。  相似文献   

5.
采用双分子类脂膜实验装置研究了大庆减压渣油与伊朗轻质减压渣油馏分的油-水薄液膜的膜电容(膜厚度)、排液-破裂方式、膜稳定时间(膜寿命)。结果表明,减渣馏分越重,分子吸附状态稳定,其油-水薄液膜越厚,膜稳定性越好。减渣馏分油-水薄液膜的排液-破裂有连续排液-破裂方式、“黑洞”排液-破裂方式和逐层破裂排液方式。当馏分越轻、馏分在油相中质量分数越低、表面活性剂加量越多时,以连续排液-破裂方式为主;而馏分越重、馏分在油相中的质量分数越高、表面活性剂加量越少时,以“黑洞”排液-破裂方式和逐层破裂排液方式为主。油相的组成,水相中的酸、碱、盐以及外加表面活性剂对减渣馏分的界面活性、吸附状态、电荷吸附量影响不同,相应的膜电容(膜厚度)和膜稳定时间也不同。  相似文献   

6.
采用剪切界面粘度仪考察了伊朗轻质减压渣油超临界分离馏分的油-水界面粘度。结果表明,随着馏分的增重,油-水界面粘度增大。随着剪切速率的增大,界面膜结构被破坏,油-水界面粘度减小。油相中馏分质量分数以及水相中盐的增加,使得馏分的油-水界面吸附量增大,油-水界面粘度增大;油相中芳烃含量以及水相pH值的增大,改变了馏分在油-水界面的吸附状态,油水界面粘度减小。  相似文献   

7.
采用动态光散射法研究了伊朗轻质减压渣油和大庆减压渣油模拟乳状液的粒度特征。研究表明,伊朗轻质减压渣油和大庆减压渣油模拟乳状液的初始粒径较小,粒度分布较窄;随着时间的延长,其粒径逐渐增大,粒度分布变宽;随着馏分增重或体相质量浓度的增加,模拟乳状液的初始粒径增大。随着油相中芳烃含量增加,伊朗轻质减压渣油和大庆减压渣油中重馏分模拟乳状液的初始粒径增大,而大庆减压渣油轻馏分模拟乳状液的初始粒径减小。随着水相中碱或盐的加入,伊朗轻质减压渣油和大庆减压渣油模拟乳状液的初始粒径均增大。  相似文献   

8.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油 水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油 水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油 水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油 水界面粘度有大幅度的增加。Tween40铺展吸附于油 水界面,其油 水界面粘度较大。Span80竖立吸附于油 水界面,其油 水界面粘度较小。Tween40取代减渣馏分铺展吸附于油 水界面,其油 水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油 水界面粘度降低。Span80楔入减渣馏分油 水界面吸附层,共同构成油 水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐减小。  相似文献   

9.
采用电泳法研究了伊朗轻质减压渣油和大庆减压渣油模拟乳状液的Zeta电位。研究表明,伊朗轻质减压渣油和大庆减压渣油乳状液的Zeta电位主要由摩擦、吸附和电离产生,并且Zeta电位值随馏分的增重而增加;当水相为纯水时,乳状液的Zeta电位为负值,其绝对值随馏分油相的质量浓度或油相中芳烃含量的增大而增加;随着水相pH的升高,模拟乳状液的Zeta电位由正电性逐渐向负电性转变;随水相中盐的加入,模拟乳状液的Zeta电位绝对值增加,电性不变。  相似文献   

10.
采用Langmuir-Blodgett(L-B)技术考察了伊朗轻质减渣馏分的L-B性质(πA曲线,膜稳定曲线),扩散相中减渣馏分的体相质量浓度和在扩展溶剂甲苯-庚烷中芳烃含量,以及水相的pH值和盐对减渣馏分的L-B性质的影响。结果表明,随着馏分的增重,伊朗轻质减渣馏分由竖立吸附状态逐渐倒伏直至铺展吸附于水相表面,馏分分子所占面积逐渐增大,膜性质随之发生变化。随着馏分体相质量浓度的增大,馏分分子以缔合体形式成膜,其中轻馏分分子缔合体较小,重馏分分子缔合体较大。随着扩散相中芳烃含量的增大,轻馏分分子以收缩状态成膜,重馏分分子以铺展状态成膜;而随着扩散相中芳烃含量的降低,轻馏分分子以铺展状态成膜,重馏分分子以缔合状态成膜。由于水相中Ca^2 离子可与馏分中酸性基团反应,使得馏分分子充分铺展吸附于水相表面或使馏分分子间相互联结,其所占水相表面积增大。  相似文献   

11.
采用L~B法考察了大庆减渣馏分油-水界面膜的扩张粘弹性,并和伊朗重质减渣馏分油-水界面膜的扩张粘弹性进行了比较。结果表明,由于大庆减渣馏分油-水界面膜中蜡的含量较高,并存在片状结构的相对滑移,各馏分的扩张粘弹性相差不大,且数值范围与伊朗重质减渣中轻馏分的扩张粘弹性范围一致。按片状结构在滑移过程中相互作用由强到弱,馏分扩张粘弹性可分为馏分7、馏分1和15以及馏分3和10三组,三组馏分扩张模量、扩张弹性和扩张粘度均依次减小,相角依次增加。馏分1、3、10、15的界面膜中易发生片状结构的滑移,其扩张粘度基本上不随扩张频率的变化而变化。  相似文献   

12.
采用相对分子质量测定、元素分析、紫外光谱和红外光谱等手段,确定了大庆减压渣油与伊朗重质减压渣油的分子参数,并考察了两个系列减压渣油馏分的模拟乳状液的稳定性。在此基础上,采用复合变量分析探讨了减压渣油馏分的各分子参数之间的关系,以及这些分子参数与模拟乳状液稳定性的关系。结果表明,减压渣油馏分不同的分子参数对其模拟乳状液稳定性的影响不同,其中馏分的相对分子质量、稠环芳香结构的含量、脂肪烃相对含量、羰基相对含量对模拟乳状液的稳定性影响最明显。一般情况下,馏分的相对分子质量越大、稠环芳香结构和羰基含量越高,则乳状液越稳定。  相似文献   

13.
采用相对分子质量测定、元素分析、紫外光谱和红外光谱等手段,确定了大庆减压渣油与伊朗重质减压渣油的分子参数,并考察了两个系列减压渣油馏分的模拟乳状液的稳定性。在此基础上,采用复合变量分析探讨了减压渣油馏分的各分子参数之间的关系,以及这些分子参数与模拟乳状液稳定性的关系。结果表明,减压渣油馏分不同的分子参数对其模拟乳状液稳定性的影响不同,其中馏分的相对分子质量、稠环芳香结构的含量、脂肪烃相对含量、羰基相对含量对模拟乳状液的稳定性影响最明显。一般情况下,馏分的相对分子质量越大、稠环芳香结构和羰基含量越高,则乳状液越稳定。  相似文献   

14.
采用Langmuir-Blodgett(L-B)技术研究了大庆减渣馏分的L-B性质(πA曲线,膜稳定曲线),以及减渣馏分在扩散相中的体相质量浓度和芳烃含量、水相的pH值和盐对减渣馏分的L-B性质的影响。结果表明,由于大庆减渣馏分中的蜡含量高,其在水相表面成膜压缩性较好,各馏分的,πA曲线形状相似。馏分体相质量浓度增大,馏分以缔合体形式成膜,缔合体结构越大,πA曲线左移越大。扩展溶剂中芳烃含量的变化对馏分中胶质、沥青质及蜡的分散状态影响不同。随着扩展溶剂中芳烃含量的增大,轻馏分中蜡质的成分多,对应,πA曲线左移;重馏分以沥青质为主,对应,πA曲线右移。馏分可吸附水相中的同性离子而相互排斥,同时,水相中碱或Ca^2 抖离子也可与馏分中的酸性基团反应,使馏分充分铺展吸附于水相表面或馏分间相互联结,以至馏分分子所占水相表面积增大,对应的,πA曲线右移。膜稳定性曲线先下降然后趋于稳定,反映出大庆减渣馏分膜结构中存在不稳定结构。  相似文献   

15.
采用L-B法考察了伊朗重质减渣馏分油-水界面膜的扩张粘弹性。结果表明,伊朗重质油减渣馏分的扩张粘弹性随馏分的增重以及扩张频率的增大而递变。随着馏分的增重,扩张模量、扩张弹性、扩张粘度增加,相角减小。随着扩张频率的增大,扩张模量、扩张弹性增加,扩张粘度、相角减小。轻馏分界面膜可压缩性好,缓冲作用强,扩张粘弹性参数随扩张频率及馏分的递变幅度小;重馏分界面膜刚性强,扩张粘弹性参数随扩张频率及馏分的递变幅度大。  相似文献   

16.
随着国内炼油能力和成品油需求矛盾日益突出,低硫船用燃料油生产成为炼油厂重油平衡以及盈利的关键。目前企业常采用轻质馏分稀释低硫减压渣油来调合生产低硫船用燃料油,存在成本高、盈利能力差问题。利用减黏工艺大幅度降低减压渣油的黏度和倾点,可实现以大比例减黏渣油调合生产低硫船用燃料油。试验结果表明,减压渣油经减黏改质后,降黏率超过90%,倾点降至30 ℃以下,与原调合方案相比,轻质馏分调入量由30.0%降至3.2%,生产成本大幅降低。此外,采用减黏路线生产低硫船用燃料油,降低了渣油加氢装置负荷,使进入催化裂化装置的高残炭劣质组分减少,改善了催化裂化装置进料,综合测算企业效益可增加 7 982 万元/a。由低硫减压渣油经减黏工艺生产低硫重质船用燃料油,对低硫船用燃料油的生产和低硫减渣的高效利用均提供了可借鉴的思路。  相似文献   

17.
针对现有三元复合驱油体系化学剂费用投入大,经济效益差的缺点,以廉价的大庆减压渣油为原料在实验室内合成出廉价的驱油用表面活性剂OCS,并初步评价了所得OCS样品的性能。结果表明,OCS表面活性剂制备重复性好,性能稳定。OCS表面活性剂具有优异的降低原油一地层水界面张力的能力,在NaOH存在条件下,能在较宽的碱浓度范围内使大庆四厂原油的油-水界面张力降至10^-3mN/m。在Na2CO3存在条件下,能在较宽的碱浓度范围内使大庆四厂原油、华北油田古一联原油及胜利孤东采油厂原油的油-水界面张力降至10^-3mN/m。在无碱条件下,对于大港油田枣园1256断块原油,当OCS表面活性剂含量达到0.1%时,油-水界面张力即可降至10-3^mN/m。对大庆四厂原油的驱油试验结果表明,OCS表面活性剂、碱和聚合物三元复合体系(ASP)的驱油效率比水驱提高20%以上。  相似文献   

18.
重质油的分子尺寸对其催化加工中所用催化剂的设计至关重要。应用隔膜池测定得出大港减压渣油及其超临界流体萃取得到的6个馏分的自由扩散系数,由此计算渣油及其馏分的分子尺寸分布和分子平均尺寸。结果表明,大港减压渣油及其馏分的分子均存在不同程度的尺寸分布,为多分散的混合物体系。萃余残渣的分子尺寸分布范围对比窄馏分明显增宽,多分散程度增大;各个馏分的平均等效直径与平均相对分子质量之间的关系呈现较好的规律性。但是,萃余残渣的分子尺寸随测定时间的变化趋势明显大于窄馏分的,沥青质分子发生聚集可能是其主要原因。大港减压渣油及其馏分的分子尺寸均随累积收率的增加逐渐增大,全馏分的分子尺寸分布范围小于6个馏分的总和,分子的易聚集性可能是造成上述结果的主要原因。  相似文献   

19.
OCS表面活性剂工业品的界面活性及驱油效率   总被引:6,自引:0,他引:6  
针对现有三元复合驱油体系化学剂费用投入大,经济效益差的缺点,利用廉价的大庆减压渣油为原料合成了驱油用表面活性剂OCS.测试结果表明,OCS表面活性剂工业品具有优异的降低原油-地层水界面张力的能力,能在较宽的碱浓度和表面活性剂浓度范围内使不同大庆采油厂原油的油-水界面张力降至10^-3mN/m.在无碱条件下,对于大港油田枣园1256断块原油,当OCS活性剂质量分数达到0.2%时,油-水界面张力即可降至10^-3mN/m.大庆原油的平面模型驱油试验表明,OCS表面活性剂、碱和聚合物三元复合体系(ASP)的驱油效率比水驱提高20%以上.  相似文献   

20.
大庆原油馏分与复合体系界面活性及乳化性研究   总被引:3,自引:1,他引:2  
为考察原油成分对复合体系界面活性的影响,将原油通过实沸点蒸馏法切割成不同的馏分,对各馏分与三元体系的动态界面张力进行了测定。还探讨了馏分油的乳化液稳定性及重组分对乳化液稳定性的影响。研究结果表明:与三元体系的界面张力,轻馏分最低,其次是重组分,再次是沸点依次升高的中间馏分;在轻馏分中加入重组分可以进一步降低界面张力;馏分油与二元( A/S) 体系形成的乳状液,其稳定性随馏分沸点升高而降低,加入重组分可提高乳状液的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号