首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liquid-phase epitaxial growth of Pb1−xSnx Te on PbTe (100) substrates has been investigated over a range of growth temperatures from 600-400°C, and has been found to produce material with good uniformity and reproducibility of carrier concen-tration and alloy composition. The assessment of the epitaxial layers by such techniques as x-ray diffraction, dislocation etching and thermo-electric power measurements is described. Various features of the epitaxial layers such as interface irregularity, dislocation and diffusion effects are discussed, and likely mechanisms for their existence are proposed. The hole concentrations of the epitaxial layers, obtained by thermoelectric power measurements, are shown to have a similar dependence on preparation temperature as for bulk annealed material, suggesting that native defects are the dominant source of carriers above~ 2×10* cm-3.  相似文献   

2.
Homogeneous, nearly perfect single crystals of Hg1-xCdxTe are extremely difficult to prepare due primarily to the high vapor pressure of mercury. However, epitaxially grown Hg1-xCdxTe layers have a high potential for yielding material of a substantially higher quality. Using a new, open-tube, horizontal slider-type liquid phase epitaxial (LPE) growth technique, in which mercury pressure controlled growth solutions are used, a high degree of growth solution compositional control has been demonstrated. LPE layers of Hg1-xCdxTe have been grown on CdTe substrates and their high quality has been confirmed by optical, transport and electron microprobe measurements. Layer thicknesses are uniform and have been varied from 5 to 40 μ by changing the degree of supercooling or the growth time. An electron carrier concentration as low as 8.6 × 1015/cm3 and electron Hall mobilities up to 2.8 × 105 cm2/V-sec at 77K have been measured on in situ annealed samples. This work was sponsored by the Department of the Air Force and the U.S. Army Research Office.  相似文献   

3.
Reported here, for the first time, is the lattice matched growth of InAs1-xSbx on GaSb. The thermodynamic incompatibility of the system, i.e., the strong tendency for the In-As-Sb liquid to dissolve the GaSb substrate, was solved via a novel liquid phase epitaxial growth technique. Liquid compositions for lattice matching conditions have been determined in the 400-600°C range. Epitaxial growth has been examined for (100), (111)B and (111)A orientations. Dislocation etch pit densities for lattice matched, and near lattice matched conditions are shown to be less than 104-cm−2 and 105-cm−4, respectively. The composition of the epitaxial layers are determined by the Gandolfi X-ray diffraction technique and compositional homogeneity has been confirmed by SEM X-ray analysis. Some material related device properties which demonstrate the reproducibility of the growth technique are presented.  相似文献   

4.
The growth of epitaxial layers of mercury-cadmium-telluride (Hg1-xCdxTe) with relatively low x (0.2-0.3) from Te-rich solutions in an open tube sliding system is studied. The development of a semiclosed slider system with unique features permits the growth of low x material at atmospheric pressure. The quality of the films is improved by the use of Cd1-yZyTe and Hg1-xCdxTe substrates instead of CdTe. The substrate effects and the growth procedure are discussed and a solidus line at a relatively low temperature is reported. The asgrown epitaxial layers are p-type with hole concentration of the order of 1·1017 cm−3, hole mobility of about 300 cm2·V−1 sec−1 and excess minority carrier life-time of 3 nsec, at 77 K.  相似文献   

5.
Remote plasma-enhanced chemical vapor deposition has been applied to growin- situ doped n-type epitaxial Si and Si1−xGex with the introduction of phosphine. Growth rates and dopant incorporation have been studied as a function of process parameters (temperature, rf power, and dopant gas flow). Growth rates remain unaltered with the introduction of PH3 during deposition, unlike in many other low temperature growth techniques. Phosphorus incorporation shows a linear dependence on PH3 flow rate, but has little if any dependence on the other growth parameters, such as radio frequency power and substrate temperature, for the ranges of parameters that were examined. Phosphorus concentrations as high as 4 × 1019 cm−3 at 14 W have been obtained.  相似文献   

6.
Remote plasma-enhanced chemical vapor deposition (RPCVD) is a low temperature growth technique which has been successfully employed inin situ remote hydrogen plasma clean of Si(100) surfaces, silicon homoepitaxy and Si1- xGex heteroepitaxy in the temperature range of 150–450° C. The epitaxial process employs anex situ wet chemical clean, anin situ remote hydrogen plasma clean, followed by a remote argon plasma dissociation of silane and germane to generate the precursors for epitaxial growth. Boron doping concentrations as high as 1021 cm?3 have been achieved in the low temperature epitaxial films by introducing B2H6/He during the growth. The growth rate of epitaxial Si can be varied from 0.4Å/min to 50Å/min by controlling therf power. The wide range of controllable growth rates makes RPCVD an excellent tool for applications ranging from superlattice structures to more conventional Si epitaxy. Auger electron spectroscopy analysis has been employed to confirm the efficacy of this remote hydrogen plasma clean in terms of removing surface contaminants. Reflection high energy electron diffraction and transmission electron microscopy have been utilized to investigate the surface structure in terms of crystallinity and defect generation. Epitaxial Si and Si1-xGex films have been grown by RPCVD with defect densities below the detection limits of TEM (~105 cm-2 or less). The RPCVD process also exploits the hydrogen passivation effect at temperatures below 500° C to minimize the adsorption of C and 0 during growth. Epitaxial Si and Si1-xGex films with low oxygen content (~3 × 1018 cm-3) have been achieved by RPCVD. Silicon and Si/Si1-xGex mesa diodes with boron concentrations ranging from 1017 to 1019 cm-3 in the epitaxial films grown by RPCVD show reasonably good current-voltage characteristics with ideality factors of 1.2-1.3. A Si/Si1-xGex superlattice structure with sharp Ge transitions has been demonstrated by exploiting the low temperature capability of RPCVD.In situ plasma diagnostics using single and double Langmuir probes has been performed to reveal the nature of the RPCVD process.  相似文献   

7.
Liquid-phase epitaxial (LPE) layers of Pb1−xSnxTe with an alloy composition 0≤×≤0.25 were doped n-type by adding from 0.002 to 10 at.% indium to the growth solution. Doping characteristics of indium and electrical properties of the epilayers at 77 and 4.2K were studied by Hall and resistivity measurements made directly on the grown layers. Electron concentration and mobility at 77 and 4.2K are presented as a function of indium doping for various x values. Doping coefficients of ~0.05 and ~0.03 are found for PbTe and Pb0.8Sn0.2Te, respectively, grown at ~450°C. For medium to high indium doping, the electron concentration saturates to a constant value independent of doping and LPE growth temperature. The saturation values decrease substantially with increasing x and increase with a decrease in sample temperature. Bulklike mobilities practically independent of doping are recorded up to an indium concentration Nln~0.3 at.%, above which the mobility decreases with increasing indium concentration. The data shows that indium is a suitable donor in liquid-phase epitaxial layers of Pbl-XSnxTe.  相似文献   

8.
As part of a systematic investigation of the effects of substrate surfaces on epitaxial growth, the transient behavior of Hg1−xCdxTe film growth on (111)B CdTe by chemical vapor transport (CVT) has been studied as a function of growth time under vertical stabilizing (hot end on top) and vertical destabilizing (hot end at bottom) ampoule orientations. The experim ental results show the morphological transition of the Hg1−xCdxTe deposition on (111)B CdTe at 545°C from three-dimensional islands to layers within about 0.5 and 0.75 h for the growth under vertical stabilizing and destabilizing conditions, respectively. The combined effects of small convective flow disturbances on the growth morphology and defect formation are measurable. The overall trends of the time dependent growth rates and compositions of the Hg1−xCdxTe epitaxial layers under stabilizing and destabilizing conditions are similar. The system atically higher growth rates of the Hg1−xCdxTe films by about 10% under vertical destabilizing conditions could be influenced by a small convective contribution to the mass transport. The combined results show that improved Hg1−xCdxTe epitaxial layers of low twin density on (111)B CdTe substrates can be obtained by CVT under vertical stabilizing conditions.  相似文献   

9.
The Gal-xInxSb alloy system is a potentially important material for the fabrication of middle wavelength infrared detectors and emitters. In order to develop the use of this material we have investigated the liquid phase epitaxial growth of Ga1−xInxSb on GaSb via stepwise grading in the range of 400–600°C using a horizontal slider boat in a transparent furnace. Single crystal layers of Ga1−xInxSb have been obtained for the composition range 0<x<.30. As-grown undoped layers are p-type and have been characterized by lattice constant, surface morphology, bandgap, carrier concentration and carrier lifetime.  相似文献   

10.
The epitaxial layers of Hg1−xCdxTe (0.17≦×≦0.3) were grown by liquid phase epitaxy on CdTe (111)A substrates using a conventional slider boat in the open tube H2 flow system. The as-grown layers have hole concentrations in the 1017− 1018 cm−3 range and Hall mobilities in the 100−500 cm2/Vs range for the x=0.2 layers. The surfaces of the layers are mirror-like and EMPA data of the layers show sharp compositional transition at the interface between the epitaxial layer and the substrate. The effects of annealing in Hg over-pressure on the properties of the as-grown layers were also investigated in the temperature range of 250−400 °C. By annealing at the temperature of 400 °C, a compositional change near the interface is observed. Contrary to this, without apparent compositional change, well-behaved n-type layers are obtained by annealing in the 250−300 °C temperature range. Sequential growth of double heterostructure, Hgl−xCdxTe/Hgl−yCdyTe on a CdTe (111)A substrate was also demonstrated.  相似文献   

11.
In this work, remote plasma-enhanced chemical vapor deposition (RPCVD) has been used to grow Ge x Si1−x /Si layers on Si(100) substrates at 450° C. The RPCVD technique, unlike conventional plasma CVD, uses an Ar (or He) plasma remote from the substrate to indirectly excite the reactant gases (SiH4 and GeH4) and drive the chemical deposition reactions. In situ reflection high energy electron diffraction, selected area diffraction, and plan-view and cross-sectional transmission electron microscopy (XTEM) were used to confirm the single crystallinity of these heterostructures, and secondary ion mass spectroscopy was used to verify abrupt transitions in the Ge profile. XTEM shows very uniform layer thicknesses in the quantum well structures, suggesting a Frank/ van der Merwe 2-D growth mechanism. The layers were found to be devoid of extended crystal defects such as misfit dislocations, dislocation loops, and stacking faults, within the TEM detection limits (∼105 dislocations/cm2). Ge x Si1−x /Si epitaxial films with various Ge mole fractions were grown, where the Ge contentx is linearly dependent on the GeH4 partial pressure in the gas phase for at leastx = 0 − 0.3. The incorporation rate of Ge from the gas phase was observed to be slightly higher than that of Si (1.3:1).  相似文献   

12.
In1?xGaxP vapor-grown electroluminescent junctions have been deposited directly onto GaAs substrates. For these layers, an alloy composition within a few mole percent of the lattice-matching composition of 51.5 mole percent GaP has been found to be essential for high luminous efficiencies and for the avoidance of microcracks throughout the epitaxial layer. For In1?xGaxP alloys near this composition, the electroluminescence characteristics of the diodes have been found to be excellent, with room-temperature external quantum efficiencies as high as 0.2% attained for red emission near 6600 Å. The properties of In.5Ga.5P junction structures deposited directly onto GaAs ar? compared with those of In1?xGaxP layers previously prepared on GaP substrates.  相似文献   

13.
A novel set-up for horizontal open-tube vapor transport epitaxy of Hg1−xCdxTe films is described. Mirror-like Hg1−xCdxTe epitaxial layers with thicknesses up to 40 Μm were grown and characterized. The growth temperature ranged from 380 to 550‡C, with growth rates of the order of 0.5–7 Μm per hour. The concentration depth profiles and the optical and electrical properties of relatively uniform films with x≈0.3–0.4 are reported. The process kinetics are studied. A simple model which takes into account the reactions occurring at the boundaries of the epitaxial layer and the interdiffusion in the epilayer is presented and discussed. The model fits the experimentally observed characteristics of the epitaxial growth process. A constant growth rate leading to a linear dependence of film thickness upon deposition time y–yi=ks t is derived. The reaction rate constant k is given by ks=koe−Ea/kT with ko=0.18 cm-sec−1and the energy of activation Ea=1.12 eV.  相似文献   

14.
InxGa1−xAs (x = 0.05 to 0.32) p-n junction structures have been grown on GaAs substrates by vapor-phase epitaxy (VPE) and liquid-phase epitaxy (LPE). It is shown that by step-grading the VPE material, lattice-mismatch strain can be absorbed by dislocations at the grading interfaces, leaving the final constant-composition device layers relatively dislocation free. In contrast, the dislocation density for LPE InxGa1−xAs increases with increasing InAs concentration. For both materials, diffusion lengths, electroluminescence efficiencies, and 77°K laser-diode parameters (threshold and efficiency) can be correlated with their dislocation densities. The VPE materials have electrical and luminescence properties that are independent of InAs concentration, and match those of their GaAs counterparts. The LPE materials exhibit properties that degrade with increasing InAs concentration. This research was supported in part by the Air Force Avionics Laboratory, WPAFB, Ohio, under Contract No. F33615-73-C-1177  相似文献   

15.
We have investigated the stabilization of GexSn1-x on (001) InSb substrates, as well as InSb coated GaAs substrates. We find that alloys up to ≈1500Å can be stabilized when 0 <x < 0.13. Single crystal, twinned material has been grown forx = 0.16, but only for thicknesses up to 500Å. Forx < 0.13, reflection high energy electron diffraction (RHEED) patterns reveal four stages of growth: quasi-two-dimensional growth, threedimensional growth, twinned growth, and finally phase separated growth. Ion channeling (001) results support the RHEED data, showing that film quality degrades with increasing thickness. Double and triple crystal x-ray diffraction results indicate that 1200Å-thick GexSn1-x films have excellent crystallinity forx < 0.10. Forx > 0.10, we observe partial phase separation into coherent α-Sn and α-GeSn. The films are stable in the temperature range of 125-130° C, depending on Ge concentration. We present a thermodynamic model which exhibits the trends observed in the growth and stability of epitaxially stabilized GexSn1-x alloys. Electrical and optical measurements show consistently high carrier concentrations (1021 cm-3) and low carrier mobility (<1000 cm2/ Vsec) for the alloys.  相似文献   

16.
The low pressure metalorganic chemical vapor deposition epitaxial growth and characterization of InP, Ga0.47In0.53 As and GaxIn1-xAsyP1-y, lattice-matched to InP substrate are described. The layers were found to have the same etch pit density (EPD) as the substrate. The best mobility obtained for InP was 5300 cm2 V−1S−1 at 300 K and 58 900 cm2 V−1 S−1 at 772K, and for GaInAs was 11900 cm2 V−1 S−1 at 300 K, 54 600 cm2 V−1 S−1 at 77 K and 90 000 cm V−1S−1 at 2°K. We report the first successful growth of a GaInAs-InP superlattice and the enhanced mobility of a two dimensional electron gas at a GaInAs -InP heterojunction grown by LP-MO CVD. LP MO CVD material has been used for GaInAsPInP, DH lasers emitting at 1.3 um and 1.5 um. These devices exhibit a low threshold current, a slightly higher than liquid phase epitaxy devices and a high differential quantum efficiency of 60%. Fundamental transverse mode oscillation has been achieved up to a power outpout of 10 mW. Threshold currents as low as 200 mA dc have been measured for devices with a stripe width of 9 um and a cavity length of 300 um for emission at 1.5 um. Values of T in the range 64–80 C have been obtained. Preliminary life testing has been carried out at room temperature on a few laser diodes (λ = 1.5μm). Operation at constant current for severalthousand hours has been achieved with no change in the threshold current.  相似文献   

17.
Conditions for growth at 550°C of high structural quality GaInAs by LPMOCVD are presented. The sensitivity of compositional grading to changes in the V/III molar ratio, growth rate and inclusion of InP buffer layers is discussed. Crystalline uniformity is indicated by double crystal x-ray rocking curves with FWHM (GaInAs) = 0.017°. By careful control of the V/III molar ratio, epitaxial GaInAs/InP heterostructures with δa/a ≤ 10−4 can be grown. Quantitative data for the TEIn-AsH3 elimination reaction rate is presented. The composition of Ga1−xInxAs which is expected in the presence of this reaction is calculated; evaluation of the corresponding rate constant shows that the adduct formation reaction proceeds at a modest but detectable rate. The problems associated with the purity of electronic grade triethylindium (TEIn) are addressed. Impurities in commercial TEIn have been determined by low resolution mass spectroscopy.  相似文献   

18.
Ga1-x}Inx}As epitaxial layers have been deposited on GaAs substrates using the technique of organometallic pyrolysis (metalorganic chemical vapour deposition). The deposition was performed in a laminar flow, resistively heated, reactor. Both n and p-type (1017}-1018} carriers/cm3}) epitaxial layers, several microns thick,were prepared, with values of x in the range 0 ≤x ≤0.3. Epitaxial layer characterisation was carried out using conventional electrical, optical and x-ray techniques. Restricted emitting area (50–75 μm diameter) zinc-diffused LED’s were prepared in ungraded epitaxial layers with emission spectral peaks in the range 0.9 —1.15 ym. External quantum efficiencies of these devices decreased rapidly with increasing x, from∼0.4% for GaAs LED’s to∼0.02% for Gao.0.75}In0.25}As LED’s.  相似文献   

19.
High quality InP and Ga1-x InxAs layers have been grown on InP substrates using MOVPE growth at atmospheric pressure. Excellent material quality has been obtained using triethylindium and trimethylgallium sources(n = 1.7 1014 cm-3, μ = 106 000 cm2V-1s-1 at 77 K for InP andn = 1 ? 3 1015 cm-3, μ= 75 000 cm2V-1 s-1 at 77 K for Ga1-xInxAs). The InP/Ga1-xInxAs interface width obtained is very small (10 Å). The first PIN diodes grown by the process exhibit excellent characteristics.  相似文献   

20.
Patterning and etching substrates into mesas separated by trenches before the growth of mismatched (by about 1% or less) epitaxial layers considerably reduces the interface misfit dislocation density when the layer thickness exceeds the critical thickness. Such films are in a metastable state, since misfit dislocations allow the epitaxial layers to relax to an in-plane lattice parameter closer to its strain-free value. Thermal annealing (from 600 to 850° C) has been used to study the stability of these structures to explore the properties of the misfit dislocations and their formation. The misfit dislocation density was determined by counting the dark line defects at the InGaAs/GaAs interface, imaged by scanning cathodoluminescence. InGaAs epitaxial layers grown on patterned GaAs substrates by organometallic chemical vapor deposition possess a very small as-grown misfit dislocation density, and even after severe annealing for up to 300 sec at 800° C the defect density is less than 1500 cm−1 for a In0.04Ga0.96As, 300 nm thick layer (about 25% of the dislocation density found in unpatterned material that has not been annealed). The misfit dislocation nucleation properties of the material are found to depend on the trench depth; samples made with deeper (greater than 0.5 μm) trenches are more stable. Molecular beam epitaxially grown layers are much less stable than the above material; misfit dislocations nucleate in much greater numbers than in comparable organo-metallic chemical vapor deposited material at all of the temperatures studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号