首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
无水硫铝酸钙(4CaO·3Al_2O_3·CaSO_4,简写为C_4A_3S)是硫铝酸盐水泥的主要矿相。在水泥中,该矿物“身兼两职”——强度因素和膨胀因素。利用其强度因素发明了硫铝酸盐快硬早强水泥;利用其膨胀因素发明了硫铝酸盐自应力水泥;利用其快硬微膨胀特点制成防渗、堵漏、锚固水泥。同时,C_4A_3S矿物的碱度比其硅酸盐水泥中的主要矿物C_3S的碱度要低得多,因此,又利用其低碱度性质发明了低碱度硫铝酸盐水泥和早强低碱度硫铝酸盐水泥。  相似文献   

2.
在水泥熟料煅烧过程中,如何能达到节省能耗的目的,人们进行了多种尝试,并在不同程度上取得了一定的进展。近年来P.K.Mehta研究的以C_2S、C_4AF、C_4A_3(?)和CaSO_4矿物组成的水泥,苏联研究的“阿里尼特水泥”,我国黄文熙、王谢等人研究的悬浮沸腾低温快速煅烧新工艺,对水泥熟料形成的温度都有大幅度的下降。这说明在水泥生产中节省能耗的研究,具有光明的前景。  相似文献   

3.
<正> 硫铝酸钙水泥的主要组分是硫铝酸钙C_4A_3S,因为它与水、石灰或石膏化合可以生成C_6AS_3H_(32)。C_4A_3S的水化曾被广泛的研究,它取决于钙矾石的形成速率和微结构。硫铝酸钙水泥可用作膨胀、自应力和高早强水泥。在前两种应用中,众所周知是利用了钙矾石的膨胀性能;而后者快速硬化的过程是由于无膨胀性钙矾石的瞬时形成。这种钙矾石因生长成较大的晶体,能在早期提供较高强度,它是由C_4A_3S和CS依据下式水化得到的:  相似文献   

4.
研究了5%掺量下,不同质量比的非晶态C_(12)A_7/CaSO_4·2H_2O体系对OPC净浆凝结时间、流动性和早期抗压强度的影响,通过XRD和SEM对水化产物的物相和形貌进行了表征。结果表明:非晶态C_(12)A_7/CaSO_4·2H_2O体系能够促进C_3S和C_2S的水化,生成C-S-H凝胶相互交织搭接形成网络结构而促进凝结;同时也促使OPC水化早期产生针状晶体钙矾石,钙矾石与前期生成的C-S-H凝胶相互填充,使水化产物结构密实,提高早期强度;当非晶态C_(12)A_7/CaSO_4·2H_2O体系掺量为5%,非晶态C_(12)A_7与CaSO_4·2H_2O的质量比为1.0∶1.0时,水泥早期强度最高,7 d抗压强度达到100 MPa,说明此体系反应比较完全。  相似文献   

5.
为了研制改性贝利特水泥,熟料合成后进行了特性鉴定,并对其水化性能进行了研究。C_4A_3S在1150~1300℃范围内是一个稳定的矿物相。C_2S和C_4AF分别在1100℃以上和1200~1300℃温度范围内处于稳定态。在1300℃烧成的水泥熟料中,主要矿物相为C_2S(29%)、C_4A_3S(30%)、C_3A(5%)和C_4AF(23%)。 对于含30%石膏的水泥,在水化初期形成了钙矾石。经过3、7和28天水化的砂浆,其抗压强度分别为234、246和383kg/cm~2。相反地,在含15%石膏的水泥水化过程中,形成了单硫酸盐水化产物和C_4AH_(13),经28天水化的砂浆强度为313kg/cm~2。  相似文献   

6.
玻璃纤维增强混凝土所用的水泥的组成如下:以硅酸钙为主要组份的硅酸盐水泥熟料20—60%(重量%,下同),以C_4A_3S为主要组份的水泥熟料10—40%,无水石膏或石膏10—40%,高炉矿渣或粉煤灰20—60%。这种水泥的(3Al_2O_3+1.5SiO_2)/CaSO_4克分子比为1.0—1.5。将这种水泥同玻璃纤维、集料、添加剂、水和缓凝剂等混合均匀后就可以制得玻  相似文献   

7.
本文就立窑厂如何应用矿化剂,以及应用中出现的问题及时其解决方法,淡点粗浅看法。1 单掺与复合 矿化剂种类很多,其中最常用的是萤石和石膏。萤石主要提供生成早强矿物C_11A_7CaF_2所需要CaF_2量,加速C_3S的形成,降低fCao,并能降低最相生成温度及粘度。石膏主要提供生成早强矿物C_4A_3S所需Ca_sO_4,促进C_3S的形成并能稳定β-C_2S防止向γ-C_2S转化(防止熟料粉化),但过量CaSO_4能引起C_2S  相似文献   

8.
我们在大连市金州龙王水泥厂的常规硅酸盐水泥生产工艺条件下,采用萤石和盐石膏作复合矿化剂在机立窑上成功地烧制出含氟、硫硅酸盐高早强水泥。其具体措施为: 一、复合矿化剂配入量的选择:在配料计算中,控制3C_2S·3CaSO_4·CaF_2过渡相在熟料煅烧过程中的形成最为10~15%,并兼顾复合矿化剂的高温挥发,选择熟料中复合矿化剂的配入量为: CaF_2=1.05±0.15%,SO_3=3.20±0.40%,CaF_2±SO_3=3.50~4.00% 二、氟硫比(F_S)的选择:针对C_(11)A_7·CaF_2和3CA·CaSO_4两种快凝早强矿物的性能差异及其对  相似文献   

9.
建材科学研究院在CaO-SiO_2-Al_2O_3-Fe_2O_3-SO_3五元系统的理论研究中,发现了铁铝酸盐水泥。实验室研究结果表明,这种水泥熟料的原料来源广,煅烧温度低,易磨好。其主要矿物组成是:C_4AF、C_4A_3S和β-C_2S。通过性能试验得出,用该熟料制成的水泥具有快硬、高强、膨胀和耐硫酸盐腐蚀等优良性能,是一个多功能、多用途的水泥新品种。在实验室研究的基础上,1982年3月,我们将铁铝酸盐水泥的研究工作转入工业试制阶段。铁铝酸盐水泥的工业试制,是在琉璃河水泥试验厂进行的。采用含Fe_2O_3为13~19%的铁矾土,以及普通的石灰石和石膏作为原料。燃料是一般工业用煤。配料范围是:C_4AF16~32%;C_4A_3S43~57%;β-C_2S20~2%。生料制备方法采用干法工艺。各种原料经分别破碎,按一定比例配合,然后在雷蒙磨中混合粉磨。生料细度控制4900孔筛筛余在3%以下。生料成分主要用CaO含量来控制,CaO含量波动范围是±0.5%。熟料煅烧在φ1.0×21.9米干法回转窑内进行。  相似文献   

10.
本文合成了C_(11)1A_7·CaCl_2和3C_2S·3CaSO_4·CaF_2两种矿物,借助于XRD、SEM等测试手段,研究了这两种矿物及其以1:1掺合时的水化历程。结果表明,矿物3C_2S·3CaSO_4·CaF_2水化能力较弱,但与C_(11)A_7·CaCl_2共掺时,其水化活性可以大大地得到激发。  相似文献   

11.
业已发现,使用复合矿化CaF_2和CaSO_4能在较低的温度下非常有效地促进高C_3S的形成.细磨这种矿化熟料制得的高阿利特水泥,其一天强度为普通波特兰水泥的三倍.  相似文献   

12.
《混凝土》2015,(4)
利用石灰石、石膏、铝矾土、方镁石制备C_4A_3S-CaO-MgO多组分复合膨胀剂,研究C_4A_3S-Ca O体系中不同配合比、SA(硫铝比)对水泥净浆凝结时间、胶砂强度、限制膨胀率的影响;MgO体系中不同煅烧温度对水泥试样限制膨胀率的影响。借助XRD、SEM测试手段,从微观对水泥体系中的水化产物、晶体形态进行分析。结果表明,C_4A_3S-Ca O-M g O多组分复合膨胀剂早期膨胀速率快,膨胀稳定期长,能补偿后期膨胀不足,28 d仍显示为微膨胀。并利用其制备出C30自密实微膨胀钢管桩基混凝土,成功应用于武汉阳逻港深水薄壁大直径钢管桩中。  相似文献   

13.
生产快硬高强水泥,首先必须选择恰当的熟料矿物组成.硅酸盐水泥的最主要矿物组成是:C_3S、C_2S、C_3A和C_4AF.实验室合成的熟料矿物的试验证明,C_3S的绝对强度最大,一个月耐压强度即达450公斤/平方厘米.C_2S则最小.各矿物强度增长的程度也不一样,C_3A强度增长的程度最大,C_2S最小.试体3天强度与28天强度之比,C_3A为1.0,C_4AF为0.8,C_3S为0.5,而C_2S为0.15. 为了了解水泥熟料四种主要矿物与其强度的关系,用阿利特水泥、贝利特水泥、铝酸盐水泥和铁水  相似文献   

14.
3Cao·3Al_2O_3CaSO_4 (C_4A_3■)是硫铝酸盐水泥的主要矿相。1957年起,各国学者对其晶体矿物学进行研究,但其晶体结构问题尚未真正解决。本研究是用正交法对C_4A_3■的配料组份和烧成工艺进行试验、烧出纯的C_4A_3■单矿物。在D/max-γβ型铜极转靶X射线衍射仪进行C_4A_3■粉晶衍射累积强度数据收集,经"TREOR"计算程序进行指标化和“9214”精化程序优化处理,最后用"POWD12"程序对C_4A_3■晶体结构进行修正和验证。  相似文献   

15.
<正> 1 改性贝利特水泥 除了为增加贝利特水泥早期强度而改善其水化反应外,目前正在研究某种能与贝利特混合发挥其早期强度的矿物。可掺入的矿物材料含有C_4A_3S,CuA_7·CaF_2和C_4AF,这些矿物均具有高水化反应速度且在硫酸钙环境中可产生钙钒石。 掺入上述矿物材料到贝利特水泥中后得到的改性贝利特水泥,比普通硅酸盐水泥烧成温度低200℃~300℃,由于在改性贝利特水泥生料中含有CaSO_4和CaF_2,这两种化合物  相似文献   

16.
对于含有矾土和石膏成分的膨胀水泥的研究表明,三氧化二铝(Al_2O_3)与三氧化硫(SO_3)的含量比是十分重要的。当Al_2O_3与SO_3之比值为1.5~2时,水泥膨胀值达0.6~2%,如果将AI_2O_3与SO_3的比值提高到3,则膨胀值下降为0.2%。用67%不同成份的硅酸盐水泥熟料掺入20%的铝渣和13%的石膏粉配制成高铝酸盐熟料水泥,经18小时后,其强度达500kg/cm~2,而含C_2S88%的硅酸盐熟料水泥在同样的时间内强度仅达8kg/cm~2。经蒸养后,在同样情况下,含铝酸三钙高的熟料水泥(C_3A12%)在一天内,由于水泥的膨胀而完全破裂。高铝水泥熟料多数膨胀值达8%  相似文献   

17.
国外用普通硅酸盐水泥熟料、二水石膏和在600~700℃煅烧过的硅化明矾制造不透水膨胀硅酸盐水泥。熟料的矿物组成为:C_3S 53%,C_2S 20%,C_3A 8%,C_4AF 15%。硅化明矾在600~700℃煅烧后得到的产物为具有反应能力的氧化铝、硫酸铝和少量的硫酸钾、钠。这些化合物能够与石膏、氢氧化钙和熟料其他水化产物作用而得到膨胀水泥。经过多次试验确定,原料最恰当的配比为:82%水泥熟料;10%二水石膏;8%在600~700℃煅烧过的硅化明矾。用这种膨胀水泥  相似文献   

18.
本文探讨了含氟阿利尼特熟料在不同温度下的合成及其水化。阿利尼特熟料在1050~1150℃较低温时是稳定的,而在1200℃时,C_(11)S_4CaF_2分解产生C_3S。掺石膏煅烧熟料时,在1150℃时可观察到更多的C_3S。无论其氧化镁的含量多寡,所有的熟料中均含有C_(11)S_4CaF_2及C_(11)A_7CaF_2。若加入二水及半水石膏,便可以部分地增强阿利尼特熟料的水化反应。  相似文献   

19.
几年来,我们对生产高级水泥熟料,进行了探讨,现将一些体会和意见提供有关单位参考。一、高级水泥熟料的矿物组成根据许多学者的研究,在硅酸盐水泥熟料四种主要矿物 C_3S、C_2S、C_3A 和 C_4AF 中,以 C_3S的绝对强度提高,C_3A 硬化最快。因此,许多学者认为生产高级水泥,熟料中的 C_3S 应在70%左右,C_3A 应在15%以上。苏联专家谢尔金,则认为高阿利特水泥水化时生成球状 Ca(OH)_2和板状的2CaO·SiO_2·aq,使水泥石不能形成致密的结构,而且产生内应力,使水泥强度的增长急剧地减缓,甚至使水泥强度下降。因此,认为高级水泥熟料中,C_3S 和 C_3A 不宜太高,他  相似文献   

20.
在苏联,矿渣硅酸盐水泥的产量占水泥总产量的30%以上,因此研究掺超塑化剂C-3的矿渣硅酸盐水泥混凝土及拌合物的性能是现实的.超塑化剂C-3由混凝土及钢筋混凝土科学研究院研制,新莫斯科有机合成厂生产.研究用400号矿渣硅酸盐水泥,熟料含量60%,矿渣40%,石膏4.5%.熟料的矿物组成(%):C_3S—58.8;C_2S—19.02;C_3A—5.48;C_4AF—14.22.矿渣的化学成份(%):SiO_2—38.13;Al_2O_3—10.22;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号