首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes of phase formation in the Na2CO3-TiO2 and Na2CO3-TiO2-Nd2O3 systems are investigated in the temperature range 600–900°C. The high-temperature solid-phase reactions underlying the process of formation of complex oxide NaNdTiO4 are studied. It is established that the synthesis of the NaNdTiO4 compound occurs through the reaction of the intermediate product Na8Ti5O14 with neodymium oxide in the temperature range 720–780°C. The optimum method is proposed for synthesizing NaNdTiO4, which makes it possible to reduce the temperature of the synthesis, to avoid the formation of impurities, and to obtain the product in a finely dispersed state.  相似文献   

2.
Zeolite Mazzite (MAZ) analogue was synthesized directly using piperazine as a structure directing agent. The reactive gel composition used was (5.0–7.0) piperazine:(6.0–7.0) Na2O:Al2O3:20.0SiO2:400H2O. Using this composition, the reaction time was shortened greatly to 4 days and the crystallization time was reduced as well. The DTA data showed that piperazine, in as-synthesized zeolite omega decomposed easily. The decomposition of the piperazine occurred at 400–480°C. NH3-TPD analysis proved that zeolite H-omega from piperazine had strong surface acidity with ammonia desorption temperature up to 590°C.  相似文献   

3.
The glass formation region in the SrO-B2O3-SiO2 system has been refined. The order of formation of crystalline phases in the system has been investigated at SrO contents of 50–75 mol %. It has been demonstrated that, at low temperatures, the 2SrO · SiO2 and 3SrO · B2O3 phases crystallize first irrespective of the composition. The congruent melting temperature of the 3SrO · B2O3 · SiO2 compound is determined to be 1180 ± 10°C. The triangulation previously performed for the SrO-B2O3-SiO2 system in the concentration range 50–75 mol % SrO has been confirmed.  相似文献   

4.
Lead-free 0.98(Na0.5K0.5)NbO3-0.02Ba(Zr0.52Ti0.48)O3 [0.98NKN-0.02BZT] ceramics were fabricated by the conventional mixed oxide method with sintering temperature at 1,080°C to 1,120°C. The results indicate that the sintering temperature obviously influences the structural and electrical properties of the sample. For the 0.98NKN-0.02BZT ceramics sintered at 1,080°C to 1,120°C, the bulk density increased with increasing sintering temperature and showed a maximum value at a sintering temperature of 1,090°C. The dielectric constant, piezoelectric constant [d 33], electromechanical coupling coefficient [k p], and remnant polarization [P r] increased with increasing sintering temperature, which might be related to the increase in the relative density. However, the samples would be deteriorated when they are sintered above the optimum temperature. High piezoelectric properties of d 33 = 217 pC/N, k p = 41%, dielectric constant = 1,951, and ferroelectric properties of P r = 10.3 μC/cm2 were obtained for the 0.98NKN-0.02BZT ceramics sintered at 1,090°C for 4 h.  相似文献   

5.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

6.
The water gas shift (WGS) reaction has been investigated widely in fuel cell technologies due to the potential for high fuel efficiency and lower emissions during the production of pure hydrogen. Industrially, the WGS reaction occurs in one of the following two ways: (a) high-temperature in the range of 310–450°C with Fe-Cr catalyst, (b) low-temperature in the range of 210–250°C with Cu-ZnO-Al2O3. In this study, a mesoporous catalyst was prepared, with a large surface area and uniformity in both pore size and distribution, by using a one-pot synthesis method. The prepared CuO-CeO2-Al2O3 brought high CO conversion (82%), and was suitable for WGS reaction at low temperature (250 °C). This article is dedicated to Professor Chang Kyun Choi for celebrating his retirement from the School of Chemical and Biological Engineering, Seoul National University.  相似文献   

7.
A new perovskite-like oxide (Rb2Nd2Ti3O10) is synthesized by the ceramic method. Its stability in a humid atmosphere and aqueous solutions of different acidities is investigated. Under these conditions, the formation of hydrated and protonated compounds is revealed. The parameters of the unit cell of the Rb2Nd2Ti3O10 oxide and its derivatives and the degree of rubidium substitution by protons for the obtained protonated phases are determined.  相似文献   

8.
The nanostructured solid solution Mn0.5Ce0.5O2 is synthesized to develop effective noble metal free catalysts for the detoxification of technogenic contaminants. Its chemical and phase compositions and textural characteristics are studied by differential thermal analysis, X-ray diffraction analysis, laser mass spectrometry, and low-temperature nitrogen adsorption. The activity of the solid solution in the oxidation of carbon monoxide is determined by the flow method within a temperature range of 20–300°C at atmospheric pressure, a gas hourly space velocity of 1800 h−1 for the following gas mixture composition, vol %: CO, 3.6; O2, 8.0; N2, balance. The activity of Mn0.5Ce0.5O2 is shown to be appreciably higher than the activity of MnOx and CeO2, and the temperature of 100% conversion is 92, 120, and 210°C, respectively. Using the solid solution as a support and the technique of impregnation, we synthesize the nanostructured catalysts Cu/Mn0.5Ce0.5O2 and Ag/Mn0.5Ce0.5O2, which manifest high activity in the oxidation of carbon monoxide: the temperature of 100% conversion is 77 and 85°C, respectively. The new catalysts could be of interest for the purification of industrial and motor vehicle wastes.  相似文献   

9.
The specific features of the chemical state of gold and indium oxide in Au-In2O3 (0.01–1.0 wt % Au) nanocomposites have been investigated by the methods of X-ray diffraction analysis, electron microscopy, infrared and optical spectroscopy, electron paramagnetic resonance, and thermal analysis. Xerogels, powders, and films obtained by the introduction of HAuCl4 into the indium hydroxide sol and thermal treatment at 50–700°C have been studied. The mutual influence of the components on the size of the Au and In2O3 particles and the state of their surface has been established. It has been shown that the synthesis of Au-In2O3 by the sol-gel method leads to the formation of nanosized indium oxide particles with the high concentration of hydroxyl groups on surfaces and favors the stabilization of gold in the form of nanoclusters and ion forms.  相似文献   

10.
Hydrosilicate nanotubes of the variable composition (Mg,Fe,Co,Ni)3Si2O5(OH)4 with a chrysotile structure have been synthesized under hydrothermal conditions at temperatures of 250–450°C and pressures of 30–100 MPa in media of different compositions. The conditions and ranges of formation of nanotubular hydrosilicates of the compositions under investigation have been determined. It has been demonstrated that the type of cation of the octahedral layer in the chrysotile structure has a decisive effect on the physicochemical conditions, mechanism, and rate of formation of nanotubes, as well as on their structure, morphology, and sizes.  相似文献   

11.
The glass formation region in the Na2Se-P2Se5 system and the temperature-concentration dependences of the electrical conductivity of glasses have been investigated over a wide range of temperatures. The densities and glass transition temperatures T g of glasses have been determined. A comparison of the electrical conductivity of glasses in the Na2Se-P2Se5 and Na2O-P2O5 systems has demonstrated that the conductivity of selenium-containing glasses (at 25°C) is approximately three orders of magnitude higher than the electrical conductivity of oxide glasses. The assumption has been made that an increase in the electrical conductivity of glasses with selenium is caused by the increase in the degree of dissociation of Na+[SePSe3/2] polar structural chemical units and the higher mobility of sodium ions in the oxygen-free matrix.  相似文献   

12.
The electrochemical promotion of the CO2 hydrogenation reaction on porous Rh catalyst–electrodes deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, was investigated under atmospheric total pressure and at temperatures 346–477 °C, combined with kinetic measurements in the temperature range 328–391 °C. Under these conditions CO2 was transformed to CH4 and CO. The CH4 formation rate increased by up to 2.7 times with increasing Rh catalyst potential (electrophobic behavior) while the CO formation rate was increased by up to 1.7 times with decreasing catalyst potential (electrophilic behavior). The observed rate changes were non-faradaic, exceeding the corresponding pumping rate of oxygen ions by up to approximately 210 and 125 times for the CH4 and CO formation reactions, respectively. The observed electrochemical promotion behavior is attributed to the induced, with increasing catalyst potential, preferential formation on the Rh surface of electron donor hydrogenated carbonylic species leading to formation of CH4 and to the decreasing coverage of more electron acceptor carbonylic species resulting in CO formation.  相似文献   

13.
Comparative characteristics are presented for the physicomechanical properties and oxidation resistance of refractory materials of Al2O3–Si3N4–C composition based on an ACPB for the original materials (fired at 1400°C) and after impregnation with a sol-gel composition and heat treatment at 800°C. Areduction in material porosity, increase in strength and reduction in carbon burn-off are due to development of a glassy phase in the pore space and on graphite flakes due to SiO2formation with thermal destruction of the organosilicon substance.  相似文献   

14.
Powders of nanosized particles of individual and mixed lanthanum and lutetium orthophosphates are synthesized. The grain growth process is studied in the temperature range of 200–1100°C. Temperature and concentration regions of existence of the solid solutions based on hexagonal and monoclinic forms of LaPO4 as well as on tetragonal LuPO4 are determined.  相似文献   

15.
The possibility of the substitution Bi → Ln occurring in the Bi3TaTiO9 Aurivillius phases has been studied for the first time. The Bi2LaTaTiO9, Bi2NdTaTiO9, Bi2SmTaTiO9, and Bi2GdTaTiO9 compounds have been synthesized according to solid-phase reactions in the temperature range 800–1100°C, and their unit cell parameters have been determined.  相似文献   

16.
Iron oxoborate Fe3O2(BO4) has been first produced in solid-phase chemical reactions. Its thermal behavior in the temperature range 20–900°C is studied with the use in-situ high-temperature powder X-ray diffraction. It is shown that Fe3O2(BO4) begins decomposing with the formation of Fe2O3 in the temperature range 660–900°C. Thermal expansion is sharply anisotropic at room temperature (αmaxmin = 7) and becomes more isotropic with an increase in the temperature (αmaxmin = 1.2). The degree of oxidation of Fe3+ has been confirmed by Mössbauer spectroscopy (at a room temperature), and two nonequivalent positions in the structure have been detected, which are occupied by iron atoms with the octahedral environment of the oxygen atoms.  相似文献   

17.
Experiments on preparation of mica/Fe3O4 pearlescent pigment were performed to discuss influences of several crucial parameters on final products. The samples were characterized by XRD, HRSEM, FTIR and color measurement, the content of Fe3O4 on the mica surface was also analyzed by XPS. It was found that the smoothness, compactness and colour deepness of the coating were influenced by different pH values and temperatures. The optimum preparation parameters of mica/Fe3O4 pearlescent pigment were obtained: the value of pH ≥ 9.2; the concentration of sodium hydroxide was 0.5 mol/l; the concentration ratio of Fe3+ to Fe2+ was 1.6 : 1; the velocity of magnetic stirring was 138 ≤ v ≤ 151 r/min; reaction temperature was 70–80°C; calcination temperature was 350°C and calcination time was 3 h.  相似文献   

18.
The origin of the effect of non-faradaic electrochemical modification of catalytic activity (NEMCA) or Electrochemical Promotion was investigated via temperature-programmed-desorption (TPD) of oxygen, from polycrystalline Pd films deposited on 8 mol%Y2O3–stabilized–ZrO2 (YSZ), an O2− conductor, under high-vacuum conditions and temperatures between 50 and 250 °C. Oxygen was adsorbed both via the gas phase and electrochemically, as O2−, via electrical current application between the Pd catalyst film and a Au counter electrode. Gaseous oxygen adsorption gives two adsorbed atomic oxygen species desorbing at about 300 °C (state β1) and 340–500 °C (state β2). The creation of the low temperature peak is favored at high exposure times (exposure >1 kL) and low adsorption temperatures (Tads < 200 °C). The decrease of the open circuit potential (or catalyst work function) during the adsorption at high exposure times, indicates the formation of subsurface oxygen species which desorbs at higher temperatures (above 450 °C). The desorption peak of this subsurface oxygen is not clear due to the wide peaks of the TPD spectra. The TPD spectra after electrochemical O2− pumping to the Pd catalyst film show two peaks (at 350 and 430 °C) corresponding to spillover Oads and according to the reaction:
The formation of the spillover oxygen species is an intermediate stage before the formation of the atomic adsorbed oxygen, Oads. Mixed gaseous and electrochemical adsorption was carried out in order to simulate the Electrochemical Promotion conditions. The initial surface coverage with oxygen from the gas phase plays a very important role on the high or low effect of polarization. In general mixed adsorption leads to much higher oxygen coverages compare with that observed either under gaseous or electrochemical adsorption. The binding strength of the atomic adsorbed oxygen (state β2) was investigated as a function of applied potential. It was found that the binding energy decreases linearly with increasing catalyst potential and work function. Similar behavior has been observed for oxygen adsorption on Pt, Ag and Au deposited on YSZ in previous studies.  相似文献   

19.
Straight In2O3 nanowires (NWs) with diameters of 50 nm and lengths ≥2 μm have been grown on Si(001) via the wet oxidation of In at 850°C using Au as a catalyst. These exhibited clear peaks in the X-ray diffraction corresponding to the body centred cubic crystal structure of In2O3 while the photoluminescence (PL) spectrum at 300 K consisted of two broad peaks, centred around 400 and 550 nm. The post-growth nitridation of In2O3 NWs was systematically investigated by varying the nitridation temperature between 500 and 900°C, flow of NH3 and nitridation times between 1 and 6 h. The NWs are eliminated above 600°C while long nitridation times at 500 and 600°C did not result into the efficient conversion of In2O3 to InN. We find that the nitridation of In2O3 is effective by using NH3 and H2 or a two-step temperature nitridation process using just NH3 and slower ramp rates. We discuss the nitridation mechanism and its effect on the PL.  相似文献   

20.
Data on interactions in the ZrO2 - Fe2O3 system stabilized by oxides in a high-temperature form at 1750°C are obtained. Of all zirconia-based compositions, only magnesium-zirconium cubic solid solution enters into an active reaction with Fe2O3 to yield MgFe2O4. The solid solutions formed by ZrO2 with oxides of yttrium, neodymium, and calcium resist degradation by attack from Fe2O3; part of iron oxide undergoes dissolution in cubic ZrO2. __________ Translated from Novye Ogneupory, No. 9, pp. 40 – 43, September, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号