首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用超声波振荡与超声波破碎两种分散方法制备了低含量碳纳米管(CNTs)增强的环氧树脂, 研究了CNTs对树脂流变特性、 固化特性和力学性能的影响。进一步采用该树脂体系通过真空灌注工艺(VARIM)制备了CNTs含量为0.01%的CNTs-玻璃纤维/环氧树脂复合材料层板, 研究了两种分散方式下CNTs对复合材料层板力学性能的影响和CNTs的增强机制。结果表明: 超声波破碎分散使CNTs长度变短, 分散性更好, 与超声波振荡分散方式相比, CNTs对树脂增黏效果和树脂固化反应的影响更明显。采用双真空灌注工艺, 两种超声波分散方式下CNTs均提高了复合材料的弯曲性能、 层间剪切性能和树脂与纤维的粘结强度, 而单真空灌注工艺下CNTs的增强效果不明显, 说明受纤维过滤作用的影响, 选择合适的灌注工艺和CNTs分散方式, 低含量CNTs可实现对灌注工艺复合材料层板的增强。  相似文献   

2.
利用自行研制的叶片式混炼装置,实现了正应力支配下聚合物复合体系的熔融共混。实验研究了混合顺序以及混合时间对高密度聚乙烯(HDPE)/尼龙6(PA6)/碳纳米管(CNTs)共混物的微观结构、流变特性、热性能及宏观力学性能的影响。结果表明:正应力支配作用能在短混合时间内实现PA6粒子和CNTs的均匀分散,分散效率高;相比于将HDPE,PA6,CNTs三者同时共混或者是先将PA6与CNTs混炼制成母料,再与HDPE共混这两种混合顺序,先将HDPE与CNTs混炼制成母料,再与PA6共混制得的共混物中分散相PA6粒径最小,分散更均匀,共混物的热性能以及力学性能更好。  相似文献   

3.
碳纳米管对水体有机污染物的吸附研究进展   总被引:2,自引:0,他引:2  
独特的物理化学性质使新型碳纳米材料-碳纳米管( CNTs)具有优异的吸附性能,被广泛的应用在污染水体治理中.详细阐述了CNTs对水体有机污染物的吸附研究进展,并总结了影响因素和吸附机理,最后展望了碳纳米管吸附应用的前景.  相似文献   

4.
通过碳纳米管来改进有机抗静电剂的性能,用于聚合物抗静电纤维.碳纳米管分散在有机抗静电剂载体PR86,TS40和TS51中制成复合抗静电剂CNTs/PR86,CNTs/TS40和CNTs/TS51,与聚丙稀(PP)混纺制备CNTs/PR86/PP纤维,CNTs/TS40/PP纤维和CNTs/TS51/PP纤维.通过对摩擦静电荷的测试结果表明,含碳纳米管的有机抗静电剂相对于纯有机抗静电剂更进一步提高了丙纶纤维的抗静电能力.  相似文献   

5.
碳纳米管/聚苯乙烯复合材料的制备及导电性能研究   总被引:2,自引:0,他引:2  
用溶液共混的方法将碳纳米管(CNTs)分散在聚乳酸聚己酸内酯(PLLA-PCL)嵌段共聚物中,再采用熔融共混的方法,制备了CNTs/PLLA-PCL/PS复合材料.扫描电镜和高分辨率光学显微镜观察发现,CNTs能够较均匀地分散在PLLA-PCL.电导率的测定表明,CNTs的加入大幅度提高了聚苯乙烯的导电性能,与CNTs//PS复合材料相比,PLLA-PCL的加入对更加有效地分散CNTs.  相似文献   

6.
氢键(Hydrogen bond)作为分子间一种常见的相互作用力,在物理、化学和生物过程中起着重要作用,这种所谓的"弱相互作用"已经被广泛研究。因独特的键合方向性和成键特异性,该键合作用能够在分子聚集过程中提供最佳的控制,被应用于晶体材料合成工艺领域。尤其是离子或电荷辅助下形成的氢键,即电荷辅助氢键(Charge-assisted hydrogen bond,CAHB),其键合强度相当于共价键,引起了研究者的关注。CAHB是指相对于普通的氢键作用,形成氢键作用的两个物质之间存在电荷分布,能够直接形成CAHB。实际上,在给定的共振结构中,电荷的分布是间接导致相对较强的CAHB形成的主要原因。此外,两性离子组分与携带相反电荷的载体之间伴随着库仑相互作用,由于存在两个能量等价的价键共振形式,进而形成具有更强结合作用的CAHB。其中,与质子供体原子上正电荷之间形成(+) CAHB,与质子接受基团上的负电荷之间形成(-) CAHB。研究发现CAHB作为一类低阻氢键,或类似于阳离子桥的盐桥,普遍存在于环境过程中。其键强比普通的氢键强得多,具有与共价键相当的特性,该特性有助于环境中许多介质自组装过程的发生。CAHB作用下形成的超级大分子结构就是天然有机质在环境中的主要存在形式。吸附是常用于去除水环境中可解离的两性有机污染物的技术手段。研究发现,碳基吸附剂和离子型化合物之间的静电相互作用可能是去除诸多离子型化合物的主要吸附机制。然而,一些其他研究已经注意到,单独的静电相互作用不能解释pH值对发生解离后的离子型污染物吸附的影响,这表明存在额外的物理或化学相互作用机制需要进一步研究。CAHB作为负电荷吸附质和吸附剂之间强的作用力,能较好地解释吸附实验中出现的一些异常现象。本文综述了CAHB在环境中的成键机理以及产生的环境效应。结合部分实验数据,着重论述了CAHB作为天然有机质(包括腐殖质和溶解性有机质)共轭形成超级大分子的重要作用机理。最后,对CAHB参与的复杂水质条件下的环境行为及其受天然有机质的影响,以及碳基吸附剂去除离子型有机污染物的选择和制备方面的研究提出了展望。  相似文献   

7.
朱平  邓广辉  邵旭东 《材料导报》2018,32(1):149-158, 166
碳纳米管(CNTs)作为性能优越的新型纳米材料被广泛用于增强基体材料,但是其易团聚且难以分散,使得实现其在基体材料中的均匀分散成为研究的重点。详细介绍了CNTs在增强水泥基复合材料研究中的分散方法与分散机理,并比较了各种分散方法的优缺点。重点论述了超声时间、酸处理时间、表面活性剂种类与掺量等因素对CNTs分散效果的影响,并讨论了评价CNTs分散效果的表征方法。将CNTs均匀分散到水泥基体中,可以显著提高复合材料的各项力学性能。  相似文献   

8.
碳纳米管(CNTs)的特性使其能够作为良好的吸附剂去除饮用水中的污染物。本文对CNTs的特性及应用前景进行分析。研究表明CNTs作为给水系统的新型净水材料在去除污染物方面有良好的应用前景。  相似文献   

9.
通过超声分散制备了分散均匀的碳纳米管(CNTs)/天然橡胶母料,利用母料制备了天然橡胶(NR)/丁苯橡胶(SBR)/炭黑(CB)/碳纳米管复合材料。通过比较常规搅拌、双辊混炼和超声分散三种方法对碳纳米管的分散及对复合材料性能的影响,表明超声分散能实现碳纳米管在基体中均匀分散,CNTs和CB的协同作用提高了复合材料的力学性能,当CB/CNTs之比为37/3时力学性能最高,与未加CNTs增强的体系相比,拉伸强度提高了6.4%。当CNTs含量为7phr,与未加CNTs的体系相比,压缩模量提高了20%。  相似文献   

10.
由于具有独特的结构和优异的性能,碳纳米管(CNTs)被认为是铝基复合材料的理想增强相。CNTs的增强效果很大程度上取决于其在铝基体中分散的均匀性,但CNTs却很难分散,给高性能CNTs/Al复合材料的制备带来了不小的难题。简要分析了CNTs在铝基体中分散困难的原因以及分散性对复合材料性能的影响,详细介绍了球磨、纳米尺度分散、分子级别混合、原位合成、喷雾干燥等主要的CNTs在铝基体中的分散方法。最后,讨论了关于CNTs分散程度的量化评估方法。  相似文献   

11.
Polystyrene (PS) was prepared using two different polymerization methods (dispersion polymerization and seed polymerization) to investigate the steric stabilizer effect during the adsorption process of carbon nanotubes (CNTs) on the surface of PS microspheres. Experiments with different microsphere diameters and difference types of CNTs were conducted to analyze the curvature effect of the spheres on the adsorption mechanism. The results showed that PS microspheres prepared through dispersion polymerization exhibited preferable adsorption behavior compared to PS spheres prepared through seed polymerization, suggesting that poly(N-vinylpyrrolidone) led to improved adsorption interactions between the CNTs and the PS microspheres in the CNTs dispersion. Additionally, the PS diameter and CNT curvature were examined with respect to the adsorption behavior between the PS microspheres and the CNTs. Multiwalled carbon nanotubes (MWCNTs) were found to be well adsorbed on the surface of PS microspheres measuring 2 microm. However, the MWCNTs were adsorbed much less on the surface of submicron-sized PS microspheres, compared with thinwalled carbon nanotubes (TWCNTs). On the other hand, TWCNTs were found to be suitable for adsorption on submicron-sized PS microspheres. These results also indicate that the curvature of the CNTs and the polymer microspheres are important to the CNT adsorption process.  相似文献   

12.
In this study, removal of Ni and Cu ions from aqueous media was assessed by the adsorption of Al2O3 nanoparticles (ANPs), with surface modification by natural organic matter (NOM). The obtained materials (NOM–ANPs) were characterized by Fourier transform infrared spectroscopy. Then, batch adsorption methods were carried out as a function of contact time, adsorbate concentration, pH and temperature. Kinetic experiments revealed that the pseudo-second-order model exhibited the best correlation with the adsorption data, the estimated maximum adsorption capacity of Ni and Cu could reach 15.38 and 62.50 mg g?1 respectively at 303 K, displaying higher efficiency for Ni and Cu removal than previously reported adsorbent materials reported in the literature. Thermodynamic studies exposed the feasibility and endothermic nature of the system. The experimental results show the technical feasibility of NOM–ANPs, its easy synthesis, economic and a promising advanced adsorbent in environmental pollution cleanup.  相似文献   

13.
This review aimed to highlight recent development in the preparation of titania/carbon nanotube composite (TiO2/CNT) and its application for the removal of organic pollutants in aqueous solution. Current studies indicate that the composite can enhance the absorption of visible light compared with pure TiO2. Generally, synergistic effects were observed for the degradation of some dyes, phenols, and benzene derivatives. The role of CNTs in the composite was explained to function as a support material, concentrate organic pollutants on the composite surface and more importantly, to extend electron–hole (e–h) recombination time as electron scavenger. However, opposite effects were observed for the degradation of some pharmaceuticals (e.g., carbamazepine and diclofenac). Despite different mechanisms involved, most organic pollutants can be photocatalytically degraded within a few minutes or hours. The summarized results and raised issues in this review will attract more future research for this new photocatalyst, particularly in areas such as synthesis methods, degradation mechanisms, and performance for more diversified structures of organic compounds.  相似文献   

14.
Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.  相似文献   

15.
碳纳米管与铝基体的结合,可以获得导电和导热性良好及综合力学性能优异的复合材料,有望成为新一代轻质高强、结构功能一体化的复合材料.在制备碳纳米管增强铝基复合材料过程中,碳纳米管的团聚将降低界面结合,诱发缺陷产生,导致性能大幅下降,因此,调控优化碳纳米管的分散状态、含量成为获取良好界面结合,获得高性能碳纳米管增强铝基复合材料的关键.基于此,综述了国内外均匀分散碳纳米管的方法,通过物理作用、化学作用和物理化学共同作用的方式进行分类,并详细介绍了高能球磨、摩擦搅拌、化学气相沉积、湿法球磨等主要的碳纳米管在铝基体中的分散方法.分析了不同分散方法的特点及其分散效果,最后总结了分散过程中存在的分散效果、缺陷的平衡、大长径比、高含量碳纳米管分散及分散评价方法等关键问题,并展望了未来在铝及其合金基体中碳纳米管分散方法的发展方向.  相似文献   

16.
Abstract

Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.  相似文献   

17.
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco–nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona‐coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona‐coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.  相似文献   

18.
Molecular dynamics simulations are used to compute the potential of mean force (PMF) governing the interactions between carbon nanotubes (CNTs) in water/surfactant systems. The effects of CNT length, diameter, chirality (armchair and zigzag) and surfactant structures on CNT interaction and dispersion in water/surfactant systems are investigated for (5, 5), (5, 0), and (10, 10) single walled CNTs with two commonly used surfactants [viz., sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)] at room conditions. An adaptive biasing force method was used to speed up the calculations. Simulations revealed that CNT length and diameter as well as optimum amount of surfactant addition and its structures can significantly affect CNT interactions (i.e., PMFs vary significantly). Surfactant molecules were found to adsorb at the CNT surface and reduced interaction strength between CNTs. SDBS surfactant contributed weaker interactions between CNTs as compared with that of SDS surfactant by a factor of about 10 indicating that SDBS is better than SDS for dispersing CNTs in an aqueous suspension. This phenomenon agrees qualitatively with the experimental results reported in the literature. The understanding of detailed atomic arrangements and atomic interactions between CNTs and surrounding molecules reported in this study is significantly helpful to computationally screening different surfactants and improving the CNT dispersion in aqueous solution. The method will also facilitate the reduction of time and cost required to produce CNT reinforced nanocomposite materials as well as homogeneous CNT dispersed solutions for many biological applications.  相似文献   

19.
The present study demonstrates a novel mixing approach for achieving a good dispersion of carbon nanotubes (CNTs) in a styrene-butadiene rubber (SBR), which leads to a significant improvement in electrical properties. Our mixing technique consists of (1) pretreatment by ultrasonication to disentangle the bundles of CNTs in organic solvent and (2) “rotation-revolution” mixing of the CNTs with SBR without mechanical shear, which prevents CNTs from collapsing during the mixing process. The present mixing method does not require the addition of any dispersing agents (amphiphilic molecules) or chemical modification of the CNTs to obtain a good dispersion. Compared with a conventional Banbury mixing technique, our method leads to a significant decrease in the percolation threshold (less than 1 phr), where the electrical conductivity suddenly increases due to the formation of percolation networks of CNTs in SBR. This is because the aspect ratio of the CNTs was maintained even after the mixing process, whereas CNTs were broken during the conventional Banbury mixing. The effect of using different types of CNTs on electrical conductivity was also investigated. The results show that the percolation threshold is largely related to the structural quality (graphitization) of the CNTs as well as their aspect ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号