首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma transferred arc (PTA) welded Ni and Co‐based alloys have gained high acceptance in many industrial applications for the wear protection of components. Recently, the cost of nickel and cobalt is rising drastically. This paper presents the development of a cost‐effective high chromium and vanadium containing iron‐based hardfacing alloy with high hardness and wear resistance. The welding processing of the alloy is carried out by PTA welding of atomized powders. Investigations on powder production as well as on weldability are presented. The coatings are metallographically studied by optical microscopy, SEM, EDX and micro‐hardness measurements. The wear resistance properties of the coatings are examined using pin on disk, dry sand rubber wheel and Miller testing, the corrosion properties are determined by immersion corrosion tests. The newly developed iron‐based alloy has nearly the same wear resistance as Ni‐based alloys with fused tungsten carbides at a higher level of corrosion resistance and much lower cost.  相似文献   

2.
Development of high wear‐resistant FTC‐based coatings on aluminium components using plasma transferred arc welding Nowadays, functional surfaces of components can be effectively protected from extreme wear with the help of fused tungsten carbide (FTC) coatings. The wear protection of steel components using FTC has been well known for many years. This paper presents the feasible study of improving the wear resistance of aluminium components with FTC particles using plasma powder arc welding. The FTC coatings are developed with two methods: one is the dispersion of carbide particles in aluminium and the other one is the combination of dispersing and alloying of FTC‐based composite powders. In this research, coatings within a thickness range of a few millimeters are developed with varying process parameters and compositions of the filler materials. The developed coating systems are tested with regard to their specific properties and their wear resistance. Finally, their application potential is presented.  相似文献   

3.
Selection of electrode for GTA‐Underwater Welding Reproducible good weld quality and economical benefit of underwater‐welding require a complete automation. For this purpose Gas Tungsten Arc‐welding (GTA or TIG) offers numerous advantages, especially for the root and the following hot pass run. Disadvantages of GTA‐welding are the low weld deposit rate and the limited lifetime of the tungsten electrode. Already small wear damages cause wide alterations of the arc under high surrounding pressure, so that a suited choice of the electrode enables to increase the productivity considerably. Therefore the influence of the electrode features on welding process, arc stability, arc ignition, weld geometry and electrode wear has been investigated. For quick and elementary selection of electrode an assessment catalogue was elaborated.  相似文献   

4.
Influencing the distribution of reinforcing particles in plasma transfer arc welding A study was made to examine the possibilities of modification the distribution of reinforcing particles in plasma transfer arc welding by using pulsed gas flows. It is shown, how modulated gas flows can be created. The effects of different modulated plasma gas flows were analysed by measuring the pressure distribution in the arc. By using a two powder feeding system, a cobalt based hardfacing alloy with different amounts of tungsten carbides was deposited on plates of carbon steel. It was investigated, how variable pulsed gas flows affect the distribution of the reinforcing carbides. The metallographic analysis shows a uniform distribution of the tungsten carbide in contrast with specimens, welded with constant plasma gas flow.  相似文献   

5.
According to the state of the art most current forging parts and technical components are made of mono‐materials. Nevertheless, parts consisting of only one material increasingly reach their specific material and constructive limits in the established production processes. Through use of previously joined raw parts consisting of different materials, it is possible to produce application‐optimized hybrid parts. This paper describes the production chain of hybrid parts produced by combining two different joining processes with subsequent hot compression tests. The joining of various materials is realized by a deposition welding with a laser‐stabilized gas‐metal‐arc deposition welding (LGD) process and a conventional friction welding process. Subsequently, the hybrid samples are compressed under varying forming parameters such as temperature and deformation degrees. In order to characterize the joining zone, metallurgical investigations are carried out.  相似文献   

6.
Titanium materials exhibit a property profile that is just as versatile as that of steel materials. Titanium materials therefore have outstanding properties, such as excellent resistance to corrosion and high strength values at low densities, which makes them ideal for use in the chemical industry and as structural materials in lightweight construction. Due to the high affinity of titanium to atmospheric gases at increased temperatures above 500 °C, titanium components have to be welded in a sophisticated process under inert shielding gas by TIG welding or by an electron beam in a vacuum. A novel innovative laser beam welding process using a pulsed laser with free pulse shaping will be presented here with which oxidation‐free titanium weld seams with excellent mechanical and technological properties can be produced. For this low heat welding process, the otherwise commonly used inert gas covering can be substituted with a shielding gas nozzle. The process‐specific low heat input and the resulting low energy input per unit length both have a positive effect on the microstructure and thus on the mechanical properties. This welding process offers both technological and economical advantages over the processes used up until now, particularly for the machining of complex components and for series production.  相似文献   

7.
Corrosion and corrosion fatigue of welded magnesium alloys In addition to the prevalent use of magnesium cast alloys a high potential for lightweight constructions is offered by magnesium‐wrought alloys, in particular in the automobile industry. The use of rolled and/or extruded magnesium alloys (profiles and sheet metals) requires suitable and economic join technologies like different welding procedures in order to join semi finished parts. Thus, the realization of lightweight constructions asks for high standards of materials‐ and joining‐technologies. In this context, the mechanical properties as well as the corrosion behaviour of the joints are of large interest. During welding of magnesium alloys, influences concerning the surface, the internal stresses and the microstructure occur. These influences particularly depend on the energy input and thus, on the welding procedure as well as the processing parameters, which all affect the corrosion behaviour of the joints. Sheets of magnesium alloys (AZ31, AZ61, AZ91) were joined with different welding procedures (plasma‐, laser beam‐ and electron‐beam welding in the vacuum and at atmosphere). The corrosion behaviour (with and without cyclic mechanical loading) of the welded joints was investigated by different methods such as corrosion tests, polarisation curves, scanning electron microscopy and metallography. Furthermore, substantial influencing variables on the corrosion behaviour of welded joints of magnesium alloys are pointed out and measures are presented, which contribute to the improvement of the corrosion behaviour.  相似文献   

8.
Low‐Transformation‐Temperature materials (LTT) were designed to reduce delay as well as residual tensile stress in welds on carbon‐manganese steels. Using the volume expansion effect during a martensitic transformation these materials counteract the volume shrinkage during cooling. While this positive effects on residual stress relief by Low‐Transformation‐Temperature‐alloys has been proven in various studies, these alloys have always been used in large volumes as additional filler material in electric arc welding processes. Modular heat fields initiated by an electron‐beam‐welding‐process offers the potential of a time‐activated initiation of compressive stresses triggered by phase transformation of Low‐Transformation‐Temperature‐alloys. Developing a technology able to reduce residual stress and thus the deformation of complex welded components is the aim. The first approach of Low‐Transformation‐Temperature‐material used in the electron beam process and its behaviour is presented here.  相似文献   

9.
This paper demonstrates the possibility of producing iron or chromium‐based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100–300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear.  相似文献   

10.
This paper demonstrates the possibility of producing iron‐ or chromium‐based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100–300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear.  相似文献   

11.
In this study, an experimental investigation has been carried out on microstructure and mechanical properties of friction stir welded copper/brass dissimilar joints. Effect of axial tool force to welding quality has been investigated under obtained optimal tool rotation rate and tool traverse speed conditions. The tool for the dissimilar copper/brass friction stir welding manufactured from X155CrMoV12–1 cold work tool steel with material number of 1.2379. The friction stir welding quality was investigated by welding surface inspections, microstructural studies, micro hardness measurements and tensile tests. The experimental studies have shown that constant axial tool force during pre‐heating and during welding process are very important. As a result, by using 2.5–3 kN of axial tool force during pre‐heating and 5.5 kN of axial tool force during welding process, copper/brass dissimilar joints with well appearance and higher mechanical strength can be obtained.  相似文献   

12.
Influence of the oxygen content in the shielding gas on microstructure and mechanical properties of laser welds of titanium and titanium alloys In the present work, a new tool concept for laser welding of titanium in high volume production has been presented and evaluated. Through the innovative application of a six‐layer metal web it is possible to calm the argon gas flow and avoid pernicious turbulences during welding. The integration of the mentioned metal web at the base of an open welding chamber allows the automated welding of highly reactive materials, such as titanium, under atmospheric pressure and inert shielding conditions. The higher density of argon relative to air offers the unique possibility to leave the chamber open on the top, so that a higher degree of flexibility than gas shielding devices for TIG welding, especially for industrial robots, is attained and can be successfully used for industrial mass production. Furthermore this device is important for welding three‐dimensional contours or to shield the regions of overlap (in overlapped joints) where shielding gas trailers are unsuccessful. By means of the presented gas shielding procedure and a modern laser welding process such as Nd:YAG laser welding, systematic investigations on the effect of oxygen on the microstructure as well as on the mechanical properties of reference bead‐on‐plate weldments could be performed for the first time. As a result of these welding trials it can be concluded that in order to avoid discolorations and hardness increase, lower restrictions to the purity of the shielding gas, in comparison to TIG welding condition, can be allowed. The maximum tolerable value of oxygen in the welding atmosphere was found to be approximately 1000 ppm for laser welding. On the contrary the maximum value for TIG welding is about 30 ppm. Further investigations on the microstructural and mechanical properties of the joints confirm that the optical quality assurance criteria for TIG welding due to the standards of aircraft construction transferable to Nd:YAG welding are.  相似文献   

13.
The quality of metallic materials depends on their composition and structure and these are determined by various physico‐chemical and technological factors. To effectively prepare materials with required composition, structure and properties, it is necessary to carry out research in two parallel directions: 1. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at the solid‐liquid‐gaseous phase interface during welding processes. 2. Development of mathematical models of specific welding technologies. We have developed a unique method of mathematical modeling of phase interaction at high temperatures. This method allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of heterogeneous processes, influence of the temperature, composition, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The model can be implemented in optimization of various technological processes in welding, surfacing, casting as well as in manufacturing of steels and non‐ferrous alloys, materials refining, alloying with special additives, removing of non‐metallic inclusions.  相似文献   

14.
New developments for wear an corrosion protection by weld surfacing with plasma transmitted arc process Highly wear‐resistant claddings which contain carbides can be applied by weld surfacing with the PTA process. The use of vanadium carbide prevents undesirable reactions with the matrix material. Thus, highly corrosion‐resistant Fe‐based claddings can be produced for applications in the food and marine industries, and Ni‐based claddings can be applied to components exposed to inorganic acid attack. A combined test is applied for determining the relative effect of corrosion under combined exposure to abrasive wear and corrosion and indicates the primacy of abrasive wear for behaviour in operation.  相似文献   

15.
Small additions of oxygen or carbon dioxide to argon shielding at laser beam welding can increase welding speed and productivity and decrease the mechanical properties of welded joints. The effect of the type of active shielding gas mixtures based on argon with additions of oxygen and/or carbon dioxide upon the local mechanical properties of laser welded joints of heat‐treatable steel 25 CrMo 4 was studied. Microshear test method has been used to investigate the local mechanical properties of welded joints, including microshear strength, microshear plasticity and microshear thoughness. The obtained data were statistically processed, and a mathematical modeling of mechanical properties applying the method of response surfaces was carried out. The analysis revealed that the impact of the used shielding gas mixtures upon the local mechanical properties of the joint is not very significant. The results indicate that the microshear test can be used successfully for estimation of the local mechanical properties distribution of laser welded joints.  相似文献   

16.
In this paper, the effects of post‐weld heat treatment on modification of microstructures and mechanical properties of friction stir welded and gas metal arc welded AA6061‐O plates were compared with each other. Gas metal arc welding and friction stir welding were used as the applicable welding processes for AA6061‐O alloys. The applied post‐weld heat treatment consisted of solution heat treatment, followed by water quenching and finally artificial aging. The samples were classified as post‐weld heat treated and as‐welded joints. The microstructural evolution, tensile properties, hardness features and fracture surfaces of both as‐welded and post‐weld heat treated samples were reported. The results clearly showed that friction stir welding process demonstrated better and more consistent mechanical properties by comparison with the gas metal arc welding process. The weld region of as‐welded samples exhibited a higher hardness value of 80 HV0.1 compared to the base material. In addition, the feasibility of post‐weld heat treatment in order to enhance the mechanical properties and to obtain more homogeneous microstructure of 6061‐O aluminum alloys was evaluated.  相似文献   

17.
Investigation of melting and re‐crystallization processes and of crack, oxide and pore formation during welding In the paper some known investigation methods of the primary re‐crystallization and of the structure of the crystallization front are discussed. All these methods have disadvantages, in some cases they cause a limited validity or are expensive. The presented new method is based on the micrographic recording of the melting and solidifying metal surfaces. The method overcomes the above‐mentioned disadvantages. It is able to investigate in the welding seams not only the primary re‐crystallization processes but also the secondary ones including the formation of cracks and pores and the appearance of non‐metallic inclusions like oxides. The facilities of the method are demonstrated on some examples of use.  相似文献   

18.
Al‐5086 H32 plates with a thickness of 3 mm were friction stir butt‐welded using different welding speeds at a tool rotational speed of 1600 rpm. The effect of welding speed on the weld performance of the joints was investigated by conducting optical microscopy, microhardness measurements and mechanical tests (i.e. tensile and bend tests). The effect of heat input during friction stir welding on the microstructure, and thus mechanical properties, of cold‐rolled Al‐ 5086 plates was also determined. The experimental results indicated that the maximum tensile strength of the joints, which is about 75 % that of the base plate, was obtained with a traverse speed of 200 mm/min at the tool rotational speed used, e.g. 1600 rpm, and the maximum bending angle of the joints can reach 180o. The maximum ductility performance of the joints was, on the other hand, relatively low, e.g. about 20 %. These results are not unexpected due to the loss of the cold‐work strengthening in the weld region as a result of the heat input during welding, and thus the confined plasticity within the stirred zone owing to strength undermatching. Higher joint performances can also be achieved by increasing the penetration depth of the stirring probe in butt‐friction stir welding of Al‐5086 H32 plates.  相似文献   

19.
Welding of Magnesium and Magnesium alloys Magnesium is mainly connected by screws. In this paper the results of experiments with different welding processes will be presented. The following methods have been applied: TIG, MIG, Nd: YAG‐Laser and CO2‐Laser welding, electron beam welding and High Power Diode Laser welding.  相似文献   

20.
Erosion resistance of hard‐facing deposits Erosive wear is inflicted by flying, bumping and furrowing particles inside the gaseous medium. Especially air vents – fan blades are the principal victims ‐ and conveying systems are attacked by solid particle impingement if fly ash, raw‐meal, cement or clinker are involved. High load of particles in combination with high circular velocities cause enormous loss of material on exposed components. Hard‐facing deposits as produced by flux‐cored arc and plasma trans‐arc welding in form of wear plates or local overlays at pertinent places are able to diminish this effect. Secure dimensioning of above mentioned systems during project engineering status only is hardly possible. So far solutions for wear protection are mainly based on time‐ and cost‐intensive field tests on the part of the manufacturer or user of affected plants and equipment. Within the framework of presented investigations experiences in laboratory testing of hard‐facing materials for attacked components are discussed. Wear tests on platings by practically relevant media give information about influencing factors as well as wear‐ and damage‐mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号