首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Mild acid treatments of vine‐shoot trimmings result in the hydrolysis of hemicellulosic sugars that can be utilised by Lactobacillus acidophilus CECT‐4179 (ATCC 832) and Debaryomyces hansenii NRRL Y‐7426 as carbon sources to obtain food additives. Since the high content of glucose in these hydrolysates reduces the effective bioconversion of xylose into xylitol by D. hansenii, the use of Lactobacillus acidophilus, one of the main probiotic species, allows this problem to be solved by the selective consumption of glucose. In order to use both sugars (glucose and xylose), hemicellulosic vine‐shoot trimming hydrolysates can be sequentially fermented by both micro‐organisms. RESULTS: It was found that, in the first step, L. acidophilus generated almost exclusively lactic acid (32.7 g of lactic acid L?1, QLA = 1.363 g L?1 h?1, YLA/S = 0.72 g g?1) by homofermentative degradation of sugars (mainly glucose), and in the second step, the remaining hemicellulosic sugars were transformed primarily into xylitol by Debaryomyces hansenii (31.3 g of xylitol L?1, QXylitol = 0.708 g L?1 h?1, YXylitol/S = 0.66 g g?1). Furthermore, L. acidophilus proved to be a strong cell‐bounded biosurfactant producer. Cell extracts were able to reduce the surface tension (ST) of PBS in 18 mN m?1 units. Lactobacillus acidophilus cells showed no difference in viability before or after PBS extraction of biosurfactants, achieving values of 0.9 × 109 colony‐forming units (CFU) mL?1 in both cases. CONCLUSIONS: These results have made a serious contribution to the re‐evaluation of a useless and pollutant residue, producing a wide range of natural food additives. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
A 22 central composite design with five center points was performed to estimate the effects of temperature (120, 130 and 140 °C) and acid loading (100, 150 and 200 mg g?1) on the yield of monomeric xylose recovery from wheat straw hemicellulose (YS/RM). Under the best hydrolysis condition (140 °C and 200 mg g?1), a YS/RM of 0.26 g g?1 was achieved. After vacuum concentration and detoxification by pH alteration and active charcoal adsorption, the hydrolyzate was used as source of xylose for xylitol bioproduction in a stirred tank reactor. A xylitol production of 30.8 g L?1 was achieved after 54 h?1 of fermentation, resulting in a productivity (QP) of 0.57 g L?1 h?1 and bioconversion yield (YP/S) of 0.88 g g?1. The maximum specific rates of xylose consumption and xylitol production were 0.19 and 0.15 g g?1 h?1, respectively. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Vinasses, the main liquid wastes from the distillation process of grape marc and wine lees, are acidic effluents with high organic content, including acids, carbohydrates, phenols, and unsaturated compounds with high chemical oxygen demand, biological oxygen demand and solid concentrations. These wastes can be revalued to provide additional benefits when they are employed as feedstock of some compounds including tartaric acid, calcium tartrate and economic nutrients for the elaboration of fermentable broths. RESULT: This study attempts to recover tartaric acid and calcium tartrate from vinasses. All the tartaric acid initially solubilised was recovered in both processes. The residual streams can be successfully employed as economic nutrients for the xylose to xylitol bioconversion, achieving higher global volumetric productivities (QP, xylitol = 0.232 g L?1 h?1) and products yields (Yxylitol/S = 0.57 g g?1) than fermentations carried out using commercial nutrients (QP, xylitol = 0.193 g L?1 h?1 and Yxylitol/S = 0.55 g g?1 respectively). CONCLUSION: Tartaric acid can be recovered from vinasses in the form of tartaric acid crystals and calcium tartrate. The residual streams generated in the process can be used as economic nutrients for the production of xylitol by D. hansenii. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
Trimmings of vineshoots, an agricultural waste with little use, were hydrolysed with dilute sulphuric acid (1–5%) in order to obtain sugar solutions suitable as fermentation media. The operational conditions for hydrolysis were selected on the basis of both the generation of hemicellulosic sugars (mainly xylose) and glucose and the concentrations of reaction byproducts affecting fermentation (furfural, hydroxymethylfurfural and acetic acid). Hemicellulosic hydrolysates were supplemented with nutrients and fermented with Lactobacillus pentosus, without any previous detoxification stage, to produce lactic acid. Under the best operational conditions assayed (3% H2SO4 and 15 min), 21.8 g lactic acid l?1 was produced (QP = 0.844 g l?1 h?1, YP/S = 0.77 g g?1), which represents a theoretical yield of 99.6%. Acetic acid was the primary byproduct formed from xylose, at about 25% of the lactic acid level. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The hemicellulosic fraction of brewer's spent grain (BSG) was hydrolysed with diluted acid under different conditions of liquid/solid ratio (8–12 g g−1), sulfuric acid concentration (100–140 mg g−1 dry matter) and reaction time (17–37 min) in order to produce a liquor with a large amount of xylose and good fermentability to produce xylitol. Results showed that all the evaluated reaction conditions were able to hydrolyse xylan and arabinan with efficiencies higher than 85.8 and 95.7% respectively, and even under the mildest reaction condition a considerable amount (92.7%) of the hemicellulosic fraction could be extracted. The hydrolysates presented different fermentabilities when used as fermentation media for xylitol production by Candida guilliermondii yeast, owing to the differences in their composition. Based on statistical analysis, the best condition for BSG acid hydrolysis was the use of a liquid/solid ratio of 8 g g−1, 100 mg H2SO4 g−1 dry matter and a reaction time of 17 min. Under this condition a high extraction efficiency of hemicellulosic sugars (92.7%) and good fermentation results (YP/S = 0.70 g g−1 and QP = 0.45 g dm−3 h−1) were attained. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
A new and effective chemical–biotechnological process for the global utilisation of barley husk (obtained from the spent grains in the brewing process) is reported. With the proposed process the three main components of the lignocellulosic residue (cellulose, hemicellulose and lignin) are utilised. A first treatment with sulfuric acid (pre‐hydrolysis) allowed the solubilisation of hemicelluloses to give xylose and glucose‐containing liquors (suitable to make fermentation media for the continuous lactic acid (LA) production with L. pentosus) and a solid phase containing cellulose and lignin. In this set of experiments, a maximum volumetric productivity (QP) = 2.077 g L?1 h?1 and product yield (YP/S) = 0.62 g g?1 were obtained for a dilution rate of 0.01 h?1. The solid residues from pre‐hydrolysis were treated with NaOH in order to increase their cellulase digestibility, and dissolve the lignin content. The cellulose residue was used as substrates for lactic acid production by simultaneous saccharification and fermentation (SSF) in media containing Trichoderma reesei cellulases and Lactobacillus rhamnosus cells using the complete MRS broth or a cheaper medium. In both cases similar LA concentrations and volumetric productivities were achieved (P = 73.4–71.0 g L?1 and QP = 1.28–1.25 g L?1 h?1, respectively), where P is LA concentration. The lignin solution obtained after the alkaline treatment was extracted with ethyl acetate in order to obtain the phenolic components. The extract obtained at pH 3 showed three times more antioxidant activity than the one extracted at pH 12.8, with an EC50 of 1.396 g L?1 for pH 3 and 4.604 g L?1 for pH 12.8. The best extracts showed twice antioxidant activity than BHT. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
Sorghum straw can be hydrolysed to obtain monosaccharide solutions, mainly containing xylose. The usual biotechnological application of xylose is its bioconversion to xylitol. The global process from straw to xylitol can give an added value to the sorghum straw. The process has the following sequential steps: reduction of size, acid hydrolysis, neutralization, detoxification, fermentation, recovery and purification. This work deals with the optimization of the detoxification process of sorghum straw hydrolysates with activated charcoal. The variables evaluated were pH (1–5), contact time (20–60 min) and activated charcoal charge (20–33 g kg?1). Mathematical models were obtained through a factorial experimental design. The models suggest that optimal conditions for detoxification are pH 1, contact time of 29 min and a charcoal charge of 33 g kg?1. These conditions allowed hydrolysates with 54.2 g xylose L?1, 13.5 g glucose L?1, 12 g arabinose L?1, 0.2 g furfural L?1 and 0.0 g acetic acid L?1 to be obtained. The results suggest that performing the detoxification step before the neutralization step gave the best outcome. Fermentations by Candida parapsilosis NRRL Y‐2315 were performed and it was confirmed that the treated hydrolysate is suitable for xylitol production, yielding up to 17 g L?1 of this polyol. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
BACKGROUND: L (+)‐Lactic acid is used in the pharmaceutical, textile and food industries as well as in the synthesis of biodegradable plastics. The aim of this study was to investigate the effects of different medium components added in cassava wastewater for the production of L (+)‐lactic acid by Lactobacillus rhamnosus B 103. RESULTS: The use of cassava wastewater (50 g L?1 of reducing sugar) with Tween 80 and corn steep liquor, at concentrations (v/v) of 1.27 mL L?1 and 65.4 mL L?1 respectively led to a lactic acid concentration of 41.65 g L?1 after 48 h of fermentation. The maximum lactic acid concentration produced in the reactor after 36 h of fermentation was 39.00 g L?1 using the same medium, but the pH was controlled by addition of 10 mol L?1 NaOH. CONCLUSION: The use of cassava wastewater for cultivation of L. rhamnosus is feasible, with a considerable production of lactic acid. Furthermore, it is an innovative proposal, as no references were found in the scientific literature on the use of this substrate for lactic acid production. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Perennial ryegrass (Lolium perenne L) was ensiled in laboratory silos after addition of glucose or xylose at rates of 0, 25, 35 and 45 g kg?1 fresh grass. In addition, an inoculum of Lactobacillus plantarum, supplying 106 organisms g?1 fresh grass, was applied to all treatments. Silos were opened after 7, 21 and 100 days and the silage was subjected to chemical and microbiological analysis. AH silages were well fermented with pHs between 3·60 and 3·70 and low NH3-N concentrations (<95 g kg?1 total nitrogen) and an absence of butyric acid. Glucose was virtually completely consumed within 21 days but 0·30–0·50 of the xylose doses remained after 100 days. Lactic acid concentrations were not increased by the addition of sugars, but the glucose treatments were associated with very high concentrations of ethanol, 60–100 g kg?1 DM, and the xylose additions produced very high concentrations of acetic acid, 60–135 g kg?1 DM. Most(>0·80) of the glucose that disappeared could be accounted for in ethanol formation but the xylose consumed could be accounted for only if the lactic acid produced in its fermentation was metabolised further to acetic acid; indeed, for the two higher doses of xylose, the concentrations of lactic acid were reduced from the control value of 177 g kg?1 DM to 140 and 120 g kg?1 DM, respectively. The results indicate that the provision of extra sugar, as hexose or pentose, allows yeasts to assume a more prominent role in the fermentation with consequent wasteful fermentation of sugars. Furthermore, the suggestion is that xylose may indirectly, via a stimulation of lactate-assimilating yeasts, encourage further metabolism of lactic acid to acetic acid.  相似文献   

10.
This work studied the cultivation conditions for the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636) in a bioreactor. A Plackett–Burman design was used for the screening of the most important factors, followed by a complete second order design, to maximise the concentration of total carotenoids. The maximum concentration of 3425.9 μg L?1 of total carotenoids was obtained in a medium containing 80 g L?1 glucose, 15 g L?1 peptone and 5 g L?1 malt extract, with an aeration rate 1.5 vvm, 180 r.p.m., 25 °C and an initial pH of 4.0. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 90 h of fermentation. Carotenoid bio‐production was partially associated with cell growth. The specific carotenoid production (YP/X) was 238 μg carotenoids/g cells, whereas YP/S (substrate to product yield) was 41.3 μg g?1. The specific growth rate (μx) was 0.045 h?1. The highest cell and total carotenoid productivity were 0.19 g L?1 h?1 and 56.9 μg L?1 h?1, respectively.  相似文献   

11.
L‐lactic acid production from spent grain with immobilized lactic acid bacteria was investigated. Spent grains were liquefied by a steam explosion treatment to obtain liquefied sugar. When 1 kg of wet spent grain was treated under the 30 kg/cm2pressure for 1 min using a 5‐L steam explosion reactor, 60 g of total sugar was obtained from the liquefied spent grain. Furthermore, 1.3% (w/v) of glucose, 0.4% (w/v) of xylose, and 0.1% (w/v) of arabinose were produced when the liquefied spent grain was treated with glucoamylase, cellulase, and hemicellulase enzymes. When batch L‐lactic acid production was carried out by Lactobacillus rhamnosus NBRC14710, 19.0 g/L L‐lactic acid was produced from the Tween 80 liquefied spent grain after 5 days. Furthermore, during repeated batch production with immobilized Lactobacillus rhamnosus NBRC14710 from Tween 80 liquefied spent grain at 37°C, the productivity of L‐lactic acid was maintained at a 10 time higher level over a period of 40 days.  相似文献   

12.
The effect of calcium chloride (CaCl2)(5 gL?1) and sodium chloride (NaCl) concentration (40, 60 and 8 gL?1) on the microbiological and mechanical properties of naturally black olives of cv. Conservolea in brines was studied. In 40 and 60 g L?1 brines the growth of lactic acid bacteria was favoured over that of yeasts, resulting in rather complete lactic acid fermentation as indicated by high free acidity (9.8–11.5 g lactic acid L?1) and low pH (3.7–3.8). At 80 g L?1 brine, yeasts were the dominant members of the microflora, rendering a product with lower acidity (8 g lactic acid L?1) and higher pH (4.3–4.5). In the presence of CaCl2 there was a consistent increase in the depth of the peripheral region in which cell wall breakage occurred. When cells separated, perforated walls were observed at sites associated with plasmodesmata. The flesh was strongest and stiffest when CaCl2 was added to olives treated with 40 g L?1 brine, consistent with cell wall breakage being the predominant mode of failure. The only observed effect on the mechanical properties of the skin was a stiffening at 60 g L?1 brine on addition of CaCl2. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
To prepare a substrate for microbial conversion of xylose into xylitol, the culm of Sasa kurilensis was hydrolysed with dilute sulphuric acid. A fermentable substrate with a relatively high xylose concentration (21.9?g?L?1) was obtained by hydrolysis with 2% sulphuric acid with a liquid to solid ratio of 10?:?1 at 121°C for 1?h. During hydrolysis at elevated temperatures, some undesirable byproducts were also generated, such as degradation products of solubilized sugars and lignin, which are potential inhibitors of microbial metabolism. These compounds were successfully removed from the hydrolysate by treatment with a commercially available activated charcoal (30?g?L?1 dose).  相似文献   

14.
BACKGROUND: Mushroom polysaccharides play an important role in functional foods because they exhibit biological modulator properties such as antitumour, antiviral and antibacterial activities. The present study involved the production, purification and characterisation of intracellular and extracellular free and protein‐bound polysaccharides from Pleurotus ostreatus and the investigation of their growth‐inhibitory effect on human carcinoma cell lines. RESULTS: Several fermentation parameters were obtained: batch polysaccharide productivities of 0.013 ± 8.12 × 10?5 and 0.037 ± 0.0005 g L?1 day?1 for intracellular and extracellular polysaccharides respectively, a maximum biomass concentration of 9.35 ± 0.18 g L?1, Pmax = 0.935 ± 0.018 g L?1 day?1, µmax = 0.218 ± 0.02 day?1, YEP/X = 0.040 ± 0.0015 g g?1 and YIP/X = 0.014 ± 0.0003 g g?1. Some polysaccharides exhibited superoxide dismutase (SOD)‐like activity of 50‐200 units. Fourier transform infrared analysis of the polysaccharides revealed absorption bands characteristic of such biological macromolecules. Cytotoxicity assays showed that both intracellular and extracellular polysaccharides exhibited antitumour activity towards several tested human carcinoma cell lines in a dose‐dependent manner. CONCLUSION: The polysaccharides of P. ostreatus exhibited high SOD‐like activity, which strongly supports their biological effect on tumour cell lines. The extracellular polysaccharides presented the highest antitumour activity towards the RL95 carcinoma cell line and should be further investigated as an antitumour agent. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Lactococcus lactis is an interesting microorganism with several industrial applications, particularly in the food industry. As well as being a probiotic species, L. lactis produces several metabolites with interesting properties, such as lactic acid (LA) and biosurfactants. Nevertheless, L. lactis is an especially demanding species since it has strong nutritional requirements, implying the use of complex and expensive culture media. RESULTS: The results showed the potential of L. lactis CECT‐4434 as a LA and biosurfactant producer. The economical cost of L. lactis cultures can be reduced by replacing the MRS medium by the use of two waste materials: trimming vine shoots as C source, and 20 g L?1 distilled wine lees (vinasses) as N, P and micronutrient sources. From the hemicellulosic fraction, 14.3 g L?1 LA and 1.7 mg L?1 surfactin equivalent were achieved after 74 h (surface tension reduction of 14.4 mN m?1); meanwhile, a simultaneous saccharification and fermentation process allowed the generation of 10.8 g L?1 LA and 1.5 mg L?1 surfactin equivalent after 72 h, reducing the surface tension by 12.1 units at the end of fermentation. CONCLUSIONS: Trimming vine shoots and vinasses can be used as alternative economical media for LA and cell‐bound biosurfactant production. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Sorghum straw is a renewable, cheap and widespread resource. The acid hydrolysis of sorghum straw to obtain xylose solutions could be a good alternative for this abundant resource. The H2SO4 hydrolysis of sorghum straw at two different temperatures (80 and 100 °C) and three H2SO4 concentrations (2, 4 and 6%) using a solid/liquid ratio of 1:10 (w/w) was studied. Kinetic parameters of mathematical models for predicting the concentrations of xylose, glucose, acetic acid and furfural were determined. The activation energy of the release reaction was 183.3 kJ mol?1 for xylose and 185.8 kJ mol?1 for glucose. The optimal conditions found were 6% H2SO4 at 100 °C for 60 min, which allow one to obtain a solution with 18.27 g xylose l?1, 6.78 g glucose l?1, 0.7 g furfural l?1 and 1.35 g acetic acid l?1. It is concluded that this process has potential for utilisation of this renewable lignocellulosic resource. © 2002 Society of Chemical Industry  相似文献   

17.
BACKGROUND By‐products generated during the processing of plant food can be considered a promising source of dietary fibre as a functional compound. The dietary fibre composition, soluble sugars and antioxidant activity of the extractable polyphenols of pea and broad bean by‐products have been analysed in this study. RESULTS: Total dietary fibre using AOAC methods plus hydrolysis (broad bean pod: 337.3 g kg?1; pea pod: 472.6 g kg?1) is higher (P < 0.05) in both by‐products than with the Englyst method (broad bean pod: 309.7 g kg?1; pea pod: 434.6 g kg?1). The main monomers are uronic acids, glucose, arabinose and galactose in broad bean pods. However, pea pods are very rich in glucose and xylose. The soluble sugars analysed by high‐performance liquid chromatography in both by‐products have glucose as the most important component, followed by sucrose and fructose. The ferric reducing antioxidant power (broad bean pod: 406.4 µmol Trolox equivalents g?1; pea pod: 25.9 µmol Trolox equivalents g?1) and scavenging effect on 2,2‐diphenyl‐1‐picrylhydrazyl radical (EC50 of broad bean pod: 0.4 mg mL?1; EC50 of pea pod: 16.0 mg mL?1) were also measured. CONCLUSIONS: Broad bean and pea by‐products are very rich in dietary fibre, particularly insoluble dietary fibre and their extractable polyphenols demonstrate antioxidant activity. Therefore they might be regarded as functional ingredients. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Water- and alkali-soluble hemicelluloses isolated from dewaxed sugarcane bagasse were sub-fractionated on DEAE-cellulose-52 chromatography and obtained six hemicellulosic sub-fractions by eluting with water, 0.1 M and 0.3 M NaCl aqueous solution, respectively. Sugar composition and molecular weight analysis revealed that the lower molecular weight (14,180–43,590 g mol?1) and more branches of hemicelluloses could be extracted by the hot water, which are rich in glucose, galactose, and xylose, while the higher molecular weight (75,430–138,170 g mol?1) and more linear hemicelluloses were able to be dissolved into 1% NaOH aqueous solution, which are rich in xylose, principally resulting from l-arabino-(4-O-methyl-glucurono)-d-xylans. In addition, it was found that with increasing the concentration of NaCl (aqueous), the hemicellulosic sub-fractions with both higher arabinose to xylose ratio and higher molecular weight were eluted. Based on the FT-IR, sugar composition and 1H and 13C NMR comparative studies, the alkali-soluble hemicellulosic sub-fractions had a classical structure, with a backbone of β-(1→4)-linked xylosyl residue substituted with arabinose at C–2 and/or C–3 of main chain, whereas the difference may occur in the distribution of branches along the xylan backbone.  相似文献   

19.
BACKGROUND: The comparative effects of organic (citric and lactic) acids, ozone and chlorine on the microbiological population and quality parameters of fresh-cut lettuce during storage were evaluated. RESULTS: Dipping of lettuce in 100 mg L−1 chlorine solution reduced the numbers of mesophilic and psychrotrophic bacteria and Enterobacteriaceae by 1.7, 2.0 and 1.6 log10 colony-forming units (CFU) g−1 respectively. Treatment of lettuce with citric (5 g L−1) and lactic (5 mL L−1) acid solutions and ozonated water (4 mg L−1) reduced the populations of mesophilic and psychrotrophic bacteria by 1.7 and 1.5 log10 CFU g−1 respectively. Organic acid dippings resulted in lower mesophilic and psychrotrophic counts than ozonated water and chlorine dippings during 12 days of storage. Lactic acid dipping effectively reduced (by 2.2 log10 CFU g−1) and maintained low populations of Enterobacteriaceae on lettuce for the first 6 days of storage. No significant (P > 0.05) changes were observed in the texture and moisture content of lettuce samples dipped in chlorine, organic acids and ozonated water during storage. Colour, β-carotene and vitamin C values of fresh-cut iceberg lettuce did not change significantly (P > 0.05) until day 8. CONCLUSION: Lactic and citric acid and ozonated water dippings could be alternative treatments to chlorine dipping to prolong the shelf life of fresh-cut iceberg lettuce. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
Shredded carrots are particularly susceptible to microbial growth and quality deterioration as a result of a large cut surface area to mass ratio. Acidified sodium chlorite (ASC) in the concentration range 500–1200 µL L?1 has been shown to have stronger efficacy against pathogens and spoilage bacteria than chlorine and does not form carcinogenic products. However, ASC in this concentration range aggravates tissue damage. The objective of this study was to optimize ASC treatment parameters to balance antimicrobial activity with quality retention of shredded carrots. Shredded carrots were immersed for either 1 min in 100, 250 or 500 µL L?1 ASC solutions or 2 min in 200 µL L?1 chlorine or water (control). Treated samples were spin‐dried and packaged in polypropylene bags and stored at 5 °C for up to 21 days. Carrots were evaluated at 7‐day intervals for visual appearance, package atmosphere composition (O2 and CO2), product firmness, tissue electrolyte leakage and pH. The microbial growth, including total aerobic bacterial counts, total coliforms/Escherichia coli, yeast and mold counts and lactic acid bacterial counts on the products was also determined. Treatments with all concentrations of ASC reduced the aerobic bacterial counts, coliform/E. coli counts, yeast mold and counts and lactic acid bacterial populations by 1.2–2.0 log cfu g?1 when compared with the water‐washed and unwashed samples. During storage, unwashed samples had a sharp increase in lactic acid bacterial populations accompanied by a sharp decline in pH readings and rapid loss in firmness and tissue integrity; samples washed with 100 µL L?1 ASC maintained the best overall visual quality, accompanied by the retention of tissue integrity and firmness. Therefore, 100 µL L?1 was determined as the optimum concentration of ASC for maintaining overall quality and firmness, inhibiting microbial growth and prolonging the shelf‐life of shredded carrots. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号