首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用响应曲面法优化Fenton法氧化降解闪烁液的的实验条件。以FeSO_4浓度、H_2O_2浓度、pH、时间和温度为考虑因素,以闪烁废液样品的总体化学需氧量(COD)去除率为响应,进行5因子中心组合实验设计。结果表明,预测模型的回归性好,拟合程度较高,方程的决定系数R2为0.938 1,校正的决定系数R_(Adj)~2为0.880 1。预测最大的COD去除率为87.19%,对应的最优实验条件为:FeSO_4浓度为0.99mmol/L,H_2O_2浓度为57.50mmol/L,pH值为2.48,时间68.53min和温度76.59℃。该实验条件下COD去除率实验平均值为85.81%(n=3),实验结果与预测的COD去除率相对误差为1.58%,说明响应曲面法适应于优化Fenton法氧化降解闪烁液的试验条件。  相似文献   

2.
In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d=0 mm) and volume added surface barrier discharges (d=2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C 3u →B3Πg ) and N2+ (B 2Σu+ → X 2Σg+ ), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d=0 mm structure can excite the largest emission intensity of N 2 (C 3 Πu →B 3Πg ), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2+ (B 2Σu+ → X 2Σg+ )/N 2(C3Πu →B3Πg ) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d=3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2(C3 Π u →B 3Πg ) than that of d=2 mm structure. The structure of d=2 mm can maintain more increasing factor than that of the d=3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.  相似文献   

3.
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.  相似文献   

4.
Laser-induced breakdown spectroscopy(LIBS) has been developed to in situ diagnose the chemical compositions of the first wall in the EAST tokamak. However, the dynamics of optical emission of the key plasma-facing materials, such as tungsten, molybdenum and graphite have not been investigated in a laser produced plasma(LPP) under vacuum. In this work, the temporal and spatial dynamics of optical emission were investigated using the spectrometer with ICCD.Plasma was produced by an Nd:YAG laser(1064 nm) with pulse duration of 6 ns. The results showed that the typical lifetime of LPP is less than 1.4 μs, and the lifetime of ions is shorter than atoms at ~10~(-6)mbar. Temporal features of optical emission showed that the optimized delay times for collecting spectra are from 100 to 400 ns which depended on the corresponding species. For spatial distribution, the maximum LIBS spectral intensity in plasma plume is obtained in the region from 1.5 to 3.0 mm above the sample surface. Moreover, the plasma expansion velocity involving the different species in a multicomponent system was measured for obtaining the proper timing(gate delay time and gate width) of the maximum emission intensity and for understanding the plasma expansion mechanism. The order of expansion velocities for various species is V_C~+ V_H V_(Si)~+ V_(Li) V_(Mo) V_W.These results could be attributed to the plasma sheath acceleration and mass effect. In addition, an optimum signal-to-background ratio was investigated by varying both delay time and detecting position.  相似文献   

5.
Tokamak exhaust is an important part of the deuterium-tritium fuel cycle system in fusion reactions. In this work, we present a laser-induced breakdown spectroscopy (LIBS)-based method to monitor the gas compositions from the exhaust system in the tokamak device. Helium (He), a main impurity in the exhaust gas, was mixed with hydrogen (H2) in different ratios through a self-designed gas distribution system, and sealed into a measurement chamber as a standard specimen. A 532 nm wavelength laser pulse with an output power of 100 mJ was used for plasma excitation. The time-resolved LIBS is used to study the time evolution characteristics of the signal strength, signal-to-background ratio (SBR), signal-to-noise ratio (SNR) and relative standard deviation (RSD) of the helium and hydrogen characteristic lines. The Boltzmann two-line method was employed to estimate the plasma temperature of laser-induced plasma (LIP). The Stark-broadened profile of He I 587.56 nm was exploited to measure the electron density. From these studies, an appropriate time was determined in which the low RSD% was consistent with the high signal-to-noise ratio. The He I 587.56 nm and Hα emission lines with good signal-to-noise ratio were extracted from the spectrum and used in the external standard method and internal standard method for quantitative analysis. The test results for mixed gas showed that the average relative error of prediction was less than 11.15%, demonstrating the great potential of LIBS in detecting impurities in plasma exhaust gas.  相似文献   

6.
The influence of a vacuum on the laser-induced breakdown spectroscopy(LIBS) of carbon in the ultraviolet wavelength range is studied.Experiments are performed with graphite using a LIBS system,which consists of a 1064 nm Nd:YAG laser,a vacuum pump,a spectrometer and a vacuum chamber.The vacuum varies from 10 Pa to 1 atm.Atomic lines as well as singly and doubly charged ions are confirmed under the vacuums.A temporal evolution analysis of intensity is performed for the atomic lines of C Ⅰ 193.09 nm and C Ⅰ 247.86 nm under different vacuum conditions.Both time-integrated and time-resolved intensity evolutions under vacuums are achieved.The lifetimes of the two atomic lines have similar trends,which supports the point of view of a 'soft spot'.Variations of plasma temperature and electron density under different vacuums are measured.This study is helpful for research on carbon detection using LIBS under vacuum conditions.  相似文献   

7.
TODGA/正十二烷萃取Am(Ⅲ)的动力学   总被引:1,自引:0,他引:1  
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂,正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Am(Ⅲ)的动力学,考察了搅拌转速、两相界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对Am(Ⅲ)萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130 r/min以下时,0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的过程为扩散控制类型,在搅拌转速为150 r/min以上时,则属于化学反应控制的动力学控制模式;(2) 求得了在(170±2) r/min、温度为(25±0.1) ℃时0.1 mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率方程:
r0=(dcorg(M)/dt)t=0=k•(S/V)c0.94aq,0(Am)c1.05aq,0(HNO3)c1.19org,0(TODGA)
在25℃下,求得表观速率常数k=(24.2±3.4)×10-3mol-2.18•L2.18•min-1•cm;(3) 0.1mol/L TODGA/正十二烷萃取Am(Ⅲ)的初始速率随着温度的升高而增大,求得表观活化能Ea=(25.94±0.98)kJ/mol。  相似文献   

8.
In this paper,two types of comparison analyses,bulk analysis and defect analysis,were carried out for marine steel.The results of laser-induced breakdown spectroscopy(LIBS)were compared with those of spark optical emission spectrometry(Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy(SEM/EDS) in the bulk and defect analyses.The comparison of the bulk analyses shows that the chemical contents of C,Si,Mn,P,S and Cr obtained from LIBS agree well with those determined using Spark-OES.The LIBS is slightly less precise than Spark-OES.Defects were characterized in the two-dimensional distribution analysis mode for Al,Mg,Ca,Si and other elements.Both the LIBS and SEM/EDS results show the enrichment of Al,Mg,Ca and Si at the defect position and the two methods agree well with each other.SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant.However,LIBS can provide this information,meaning that the sensitivity of LIBS is higher than that of SEM/EDS.LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.  相似文献   

9.
采用高温熔盐电解法合成了MoS2,为了提高MoS2对铀的吸附性能,以MoS2为基底复合Mn2O3。MoS2的片层结构有效地分散了Mn2O3的团聚,同时引进了亲铀氧基团。采用电子扫描显微镜及能谱(SEM & EDS)、X射线衍射仪(XRD)、Zeta电位仪等对Mn2O3@MoS2复合材料进行了表征,表征结果表明,高温结晶合成的Mn2O3@MoS2复合材料具有完整的微观形貌和稳定的晶体结构。通过静态吸附批实验探究了在不同变量下Mn2O3、MoS2和Mn2O3@MoS2三个材料对溶液中铀的吸附效果,结果表明,Mn2O3@MoS2的吸附性能优于Mn2O3和MoS2,在pH=5.5时,吸附平衡时间为90 min,吸附动力学遵循准二级动力学模型,吸附等温线符合Langmuir模型。Mn2O3@MoS2的单层饱和吸附容量为117.5 mg/g,在293.15~318.15 K的温度梯度中,升温有利于吸附进行。  相似文献   

10.
Laser-induced breakdown spectroscopy(LIBS) has become a powerful technology in geological applications.The correct identification of rocks and soils is critical to many geological projects.In this study,LIBS database software with a user-friendly and intuitive interface is developed based on Windows,consisting of a database module and a sample identification module.The database module includes a basic database containing LIBS persistent lines for elements and a dedicated geological database containing LIBS emission lines for several rock and soil reference standards.The module allows easy use of the data.A sample identification module based on partial least squares discriminant analysis(PLS-DA) or support vector machine(SVM) algorithms enables users to classify groups of unknown spectra.The developed system was used to classify rock and soil data sets in a dedicated database and the results demonstrate that the system is capable of fast and accurate classification of rocks and soils,and is thus useful for the detection of geological materials.  相似文献   

11.
The complex nature of laser-material interaction causes non-stoichiometric ablation of alloy samples.This is attributed to matrix effect, which reduces analyzing capability. To address this issue, the analytical performance of three different normalization methods, namely normalization with background, internal normalization and three point smoothing techniques at different parameter settings is studied for quantification of Ag and Zn by Laser induced breakdown spectroscopy(LIBS).The LIBS spectra of five known concentration of silver zinc binary composites have been investigated at various laser irradiances(LIs). Calibration curves for both Ag(I) line(4d~(10)5s~2S_(1/2)→4d~(10)5p~2P_(1/2) at 338.28 nm) and Zn(I) line(4s5s~3S_1→4s4p~3P_2 at 481.053 nm) have been determined at LI of 5.86?×?10~(10)W cm~(-2). Slopes of these calibration curves provide the valuation of matrix effect in the Ag–Zn composites. With careful sample preparation and normalization after smoothing at optimum parameter setting(OPS), the minimization of sample matrix effect has been successfully achieved. A good linearity has been obtained in Ag and Zn calibration curve at OPS when normalized the whole area of spectrum after smoothing and the obtained coefficients of determination values were R~2?=?0.995 and 0.998 closer to 1. The results of matrix effect have been further verified by analysis of plasma parameters. Both plasma parameters showed no change with varying concentration at OPS. However, at high concentration of Ag, the observed significant changes in both plasma parameters at common parameter setting PS-1 and PS-2 were the gesture of matrix effect. In our case, the better analytical results were obtained at smoothing function with optimized parameter setting that indicates it is more efficient than normalization with background and internal normalization method.  相似文献   

12.
Saindha salt is considered to be more advantageous than the other edible salts for the patients suffering from diabetes,blood pressure and kidney diseases.To explore the constituent elements of this salt,laser induced breakdown spectroscopy(LIBS) has been exploited for its qualitative and quantitative analysis.The third harmonic(355 nm) of a Q-switched Nd:YAG laser has been used to produce the saindha salt plasma and the time integrated optical emission spectra were registered using a set of six miniature spectrometers covering the spectral range of 230-805 nm.The spectroscopic analysis of the emission spectra predominately revealed numerous neutral or singly ionized emission lines of Ca,Mg,Na,K,Fe,Sr,Si,Li and Al.The laser produced plasma was characterized by calculating the electron temperature from the Boltzmann plots and the electron number density from the Stark broadened line profile as a function of laser irradiance and distance from the target sample.The relative concentration of the constituent elements was extracted by the integrated line intensities of the strongest spectral line of each element using the self-calibration-LIBS(SC-LIBS) and one-line calibration free-LIBS(OLCF-LIBS) methods.For cross-validation,the LIBS results have been compared with that obtained from the inductively coupled plasma-mass spectroscopy(ICP-MS) showing good agreement.  相似文献   

13.
Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy(LIBS). A pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser(1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C–H molecular band was clearly detected in the oil-contaminated soil, while no C–H band was detected in the clean soil. Linear calibration curve of the C–H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C–H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium(Ti) lines, which were not detected in the clean soil. The existence of the C–H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray(SEM/EDX) spectroscopy,showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio(S/N ratio).  相似文献   

14.
The authors discuss a single-crystal inorganic scintillator, cerium-doped lutetium oxyorthosilicate (Lu2(1-x)Ce2x (SiO4) or LSO). It has a scintillation emission intensity which is ~75% of NaI(Tl) with a decay time of ~40 ns. The peak emission wavelength is 420 nm. It has a very high gamma-ray detection efficiency due to its density of 7.4 g/cm3 and its effective atomic number of 66. Its radiation length of 1.14 cm is only slightly longer than bismuth germanate (BGO). The scintillation properties of Ce-doped LSO are compared to NaI(Tl), BGO, and cerium-doped gadolinium oxyorthosilicate (GSO). In addition to desirable physical properties such as high density and high atomic number, LSO also processes a combination of high emission intensity and fast decay which together are superior to any other known single crystal scintillator  相似文献   

15.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

16.
为研究Gd2O3-Nd2O3-ZrO2-CeO2四元氧化物体系的高温固相反应,以Gd2O3、Nd2O3、ZrO2、CeO2混合粉体为原材料,在1 673 K和1 773 K温度下煅烧24、48、72 h,分别制备了系列样品,并对合成样品进行了XRD和SEM分析。结果表明,合成产物为具有缺陷萤石相且伴有少量烧绿石相的Gd2-xNdxZr2-xCexO7(0≤x≤2)晶体化合物。随着煅烧温度的升高和煅烧时间的延长,产物中立方烧绿石相的化合物增多,晶粒尺寸变大,且有少量未知相生成。进而探讨了锆基陶瓷固化多核素的潜在应用,并提出了未来研究的相关热点问题。  相似文献   

17.
Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A¬X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017± 0.2×1017 cm −3 . This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm −3 .  相似文献   

18.
以N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)为萃取剂、正十二烷为稀释剂,研究了该萃取体系在恒界面池中萃取Sr(Ⅱ)的动力学,考察了搅拌转速、界面面积、萃取剂浓度、金属离子浓度、酸度和温度等因素对萃取行为的影响,并推导了相应的萃取机理。结果表明:(1) 搅拌转速在130r/min以下时,0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的过程为扩散控制类型,在搅拌转速为150r/min以上时,则可能属于化学反应控制的动力学控制模式;(2) 求得了在(170±2)r/min、温度为(25±0.1)℃时0.1mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率方程: r0= ((dcorg(M)/dt) |t=0)=k• (S/V)c0.91aq,0(Sr)c0.73aq,0(HNO3)c0.87org,0 (TODGA) 在25℃下,求得表观萃取速率常数k=(22.5±2.5)×10-3mol-1.51•L1.51•min-1•cm;(3) 0.1 mol/L TODGA/正十二烷萃取Sr(Ⅱ)的初始速率随着温度的升高而增大,求得表观萃取活化能Ea(Sr(Ⅱ))=(24.3±0.7)kJ/mol。  相似文献   

19.
Dielectric barrier discharges (DBDs) have been widely used in ozone synthesis, materials surface treatment, and plasma medicine for their advantages of uniform discharge and high plasma-chemical reactivity. To improve the reactivity of DBDs, in this work, the O2 is added into Ar nanosecond (ns) pulsed and AC DBDs. The uniformity and discharge characteristics of Ar ns pulsed and AC DBDs with different O2 contents are investigated with optical and electrical diagnosis methods. The DBD uniformity is quantitatively analyzed by gray value standard deviation method. The electrical parameters are extracted from voltage and current waveforms separation to characterize the discharge processes and calculate electron density ne. The optical emission spectroscopy is measured to show the plasma reactivity and calculate the trend of electron temperature Te with the ratio of two emission lines. It is found that the ns pulsed DBD has a much better uniformity than AC DBD for the fast rising and falling time. With the addition of O2, the uniformity of ns pulsed DBD gets worse for the space electric field distortion by O2, which promotes the filamentary formation. While, in AC DBD, the added O2 can reduce the intensity of filaments, which enhances the discharge uniformity. The ns pulsed DBD has a much higher instantaneous power and energy efficiency than AC DBD. The ratio of Ar emission intensities indicates that the Te drops quickly with the addition of O2 both ns pulsed and AC DBDs and the ns pulsed DBD has an obvious higher Te and ne than AC DBD. The results are helpful for the realization of the reactive and uniform low temperature plasma sources.  相似文献   

20.
In this paper,the influence of magnetic field strength on laser-induced breakdown spectroscopy(LIBS) has been investigated for various pressures.The plasma plume was produced by employing Q-switch Nd:YAG laser ablation of an Al-Li alloy operating at a 1064 nm wavelength.The results indicated that the LIBS intensity of the Al and Li emission lines is boosted with an increase of magnetic strength.Typically,the intensity of the Al Ⅰ and Li Ⅰ spectral emissions can be magnified by 1.5-3 times in a steady magnetic field of 1.1 T compared with the field-free case.Also,in this investigation we recorded time-resolved images of the laser-produced plume by employing a fast ICCD camera.The results show that the luminance of the plasma is enhanced and the time of persistence is increased significantly,and the plasma plume splits into two lobes in the presence of a magnetic field.The probable reason for the enhancement is the magnetic confinement effect which increases the number density of excited atoms and the population of species in a high energy state.In addition,the electron temperature and density are also augmented by the magnetic field compared to the field-free case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号