首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-step process has been developed for silicon carbide (SiC) coated polyurethane mimetic SiC preform containing silicon nitride (Si3N4) whiskers. SiC/Si3N4 preforms were prepared by pyrolysis/siliconization treatment at 1600 °C, of powder compacts containing rigid polyurethane, novolac and Si, forming a porous body with in situ grown Si3N4 whiskers. The properties were controlled by varying Si/C mole ratios such as 1–2.5. After densification using a chemical vapour infiltration, the resulting SiC/Si3N4/SiC composites showed excellent oxidation resistance, thermal conductivity of 4.32–6.62 Wm−1 K−1, ablation rate of 2.38 × 10−3  3.24 × 10−3 g cm−2 s and a flexural strength 43.12–55.33 MPa for a final density of 1.39–1.62 gcm−3. The presence of a Si3N4 phase reduced the thermal expansion mismatch resulting in relatively small cracks and well-bonded layers even after ablation testing. This innovative two-step processing can provide opportunities for expanded design for using SiC/Si3N4/SiC composites being lightweight, inexpensive, homogeneous and isotropic for various high temperature applications.  相似文献   

2.
TiB2–AlN–SiC (TAS) ternary composites were prepared by reactive hot pressing at 2000°C for 60 min in an Ar atmosphere using TiH2, Si, Al, B4C, BN and C as raw powders. The phase composition was determined to be TiB2, AlN and β-SiC by XRD. The distribution of elements Al and Si were not homogeneous, which shows that to obtain a homogeneous solid solution of AlN and SiC in the composites by the proposed reaction temperatures higher than 2000°C or time duration longer than 60 min are needed. The higher fracture toughness (6·35±0·74 MPa·m1/2 and 6·49±0·73 MPa·m1/2) was obtained in samples with equal molar contents of AlN and SiC (TAS-2 and TAS-5) in the TAS composites. The highest fracture strength (470±16 MPa) was obtained in TAS-3 sample, in which the volume ratio of TiB2/(AlN+SiC) was the nearest to 1 and there was finer co-continuous microstructure. ©  相似文献   

3.
SiC ceramics were prepared from nanosized β-SiC powder with different compositions of AlN and Y2O3 sintering additives by spark plasma sintering (SPS) at 1900 °C for 600 s in N2. The relative density of the sintered SiC specimens increased with increasing amount of AlN, reaching a relative density higher than 99%, while at the same time grain size decreased significantly. The smallest average grain size of 150 nm was observed for SiC sample sintered with 10 vol% of additives consisting of 90 mol% AlN and 10 mol% Y2O3. Fully dense nanostructured SiC ceramics with inhibited grain growth were obtained by the AlN additive and SPS technique. The flexural strength of the SiC body containing 70 mol% AlN and 30 mol% Y2O3 additives reached the maximum value of 1000 MPa. The SiC bodies prepared with AlN and Y2O3 additives had the fracture toughness of around 2.5 MPam1/2.  相似文献   

4.
A SiC–AlN composite was fabricated by mechanical mixing of SiC and AlN powders, hot pressed under 40 MPa at 1950°C in Ar atmosphere. The object of this attempt was to achieve full density and a little solid solution formation. Fine microstructure and crack deflection behaviour are to improve the mechanical properties of the SiC–AlN composite. The bending strength and fracture toughness were achieved 800 MPa and 7·6 MPa m1/2 at room temperature, respectively. The fracture toughness of the SiC–AlN composite shows minimal change between room temperature and 1400°C. Post-HIP improves the surface densification of the SiC–AlN composite resulting in an increase of the strength and the ability to resist oxidization. The bending strength of SiC–AlN composite increases from 800 to 1170 MPa after HIP treatment for 1 h under 187 MPa at 1700°C in N2 atmosphere.  相似文献   

5.
6.
SiC ceramics were reaction joined in the temperature range of 1450–1800 °C using TiB2-based composites starting from four types of joining materials, namely Ti–BN, Ti–B4C, Ti–BN–Al and Ti–B4C–Si. XRD analysis and microstructure examination were carried out on SiC joints. It is found that the former two joining materials do not yield good bond for SiC ceramics at temperatures up to 1600 °C. However, Ti–BN–Al system results in the connection of SiC substrates at 1450 °C by the formation of TiB2–AlN composite. Furthermore, nearly dense SiC joints with crack-free interface have been produced from Ti–BN–Al and Ti–B4C–Si systems at 1800 °C, i.e. joints TBNA80 and TBCS80, whose average bending strengths are measured to be 65 MPa and 142 MPa, respectively. The joining mechanisms involved are also discussed.  相似文献   

7.
Cylindrical SiC-based composites composed of inner Si/SiC reticulated foam and outer Si-infiltrated SiC fiber-reinforced SiC (SiCf/Si/SiC) skin were fabricated by the electrophoretic deposition of matrix particles into SiC fabrics followed by Si-infiltration for high temperature heat exchanger applications. An electrophoretic deposition combined with ultrasonication was used to fabricate a tubular SiCf/SiC skin layer, which infiltrated SiC and carbon particles effectively into the voids of SiC fabrics by minimizing the surface sealing effect. After liquid silicon infiltration at 1550 °C, the composite revealed a density of 2.75 g/cm3 along with a well-joined interface between the inside Si/SiC foam and outer SiCf/Si/SiC skin layer. The results also showed that the skin layer, which was composed of 81.4 wt% β-SiC, 17.2 wt% Si and 1.4 wt% SiO2, exhibited a gastight dense microstructure and the flexural strength of 192.3 MPa.  相似文献   

8.
《Ceramics International》2016,42(14):15811-15817
In this paper, a novel surface modification method for Cf/SiC composites is proposed. Si/SiC coating on Cf/SiC composites is prepared by tape casting and reaction bonding method. The effects of carbon content on the rheological property of the slurries along with the microstructure of the sintered coatings are investigated. The best result has been obtained by infiltrating liquid silicon into a porous green tape with a carbon density of 0.84 g/cm3. In addition, the effect of sintering parameters on the phase composition of the coatings is studied. Dense Si/SiC coating with high density as well as strong bonding onto the substrate is obtained. This Si/SiC coating exhibits an excellent mechanical property with HV hardness of 16.29±0.53 GPa and fracture toughness of 3.01±0.32 MPa m1/2. Fine surface with roughness (RMS) as low as 2.164 nm is achieved after precision grinding and polishing. This study inspires a novel and effective surface modification method for Cf/SiC composites.  相似文献   

9.
We have studied phonon properties of graphene theoretically with different concentrations of 13C isotope and vacancy-type defects. The forced vibrational method, which is based on the mechanical resonance to extract the pure vibrational eigenmodes by numerical simulation, has been employed to compute the phonon density of states (PDOSs) and mode pattern of isotope-disordered graphene as well as a combined isotope and vacancy-type defective graphene structure. We observe a linear reduction of the E2g mode frequencies with an increase in 13C concentration due to the reduced mass variation of the isotope mixture. We find a downshift of the E2g mode of 65 cm 1, which is a very good agreement with the experimental results, and the phonon frequencies described by the simple harmonic oscillator model. The vacancy-type defects break down the phonon degeneracy at the Г point of the LO and TO modes, distort and shift down the phonon density of states significantly. The PDOS peaks for the combined isotope and vacancy-type defects show the remarkable increase in the low-frequency region induced by their defect formations. Due to phonon scattering by 13C isotope or vacancies, some graphene phonon wave functions become localized in the real space. Our numerical experiments reveal that the lattice vibrations in the defective graphene show the remarkably different properties such as spatial localization of lattice vibrations due to their random structures from those in the perfect graphene. The calculated typical mode patterns for in-plane K point optical phonon modes indicate that the features of strongly localized state depend on the defect density, and the phonon is localized strongly within a region of several nanometers in the random percolation network structures. In particular, for in-plane K point optical phonon modes, a typical localization length is on the order of ≈ 7 nm for isotope impurities, ≈ 5 nm for vacancy-type defects and ≈ 6 nm for mixed-type defects at high defect concentrations of 30%. Our findings can be useful for the interpretation of experiments on infrared, Raman, and neutron-diffraction spectra of defective graphene, as well as in the study of a wide variety of other physical properties such as thermal conductivity, specific heat capacity, and electron–phonon interaction.  相似文献   

10.
Porous SiC/SiCN composite ceramics with heterogeneous pore structure and rod-like SiCN grains were fabricated by foaming and reaction sintering. The mixture slurry containing SiC and silicon as raw materials, cornstarch as binder, Y2O3 as sintering additive and an electrosteric dispersant was stirred with foams derived from pre-foaming using foaming agent. The casted green body was sintered at 1650 °C under nitrogen atmosphere. The results demonstrated that the porous SiC/SiCN ceramics exhibited hierarchical vias ranging from 1 μm to 1 mm and the rod-like crystalline SiCN grains generated in the SiC matrix.  相似文献   

11.
Quasi-free-standing monolayer and bilayer graphene is grown on homoepitaxial layers of 4H-SiC. The SiC epilayers themselves are grown on the Si-face of nominally on-axis semi-insulating substrates using a conventional SiC hot-wall chemical vapor deposition reactor. The epilayers were confirmed to consist entirely of the 4H polytype by low temperature photoluminescence. The doping of the SiC epilayers may be modified allowing for graphene to be grown on a conducing substrate. Graphene growth was performed via thermal decomposition of the surface of the SiC epilayers under Si background pressure in order to achieve control on thickness uniformity over large area. Monolayer and bilayer samples were prepared through the conversion of a carbon buffer layer and monolayer graphene respectively using hydrogen intercalation process. Micro-Raman and reflectance mappings confirmed predominantly quasi-free-standing monolayer and bilayer graphene on samples grown under optimized growth conditions. Measurements of the Hall properties of Van der Pauw structures fabricated on these layers show high charge carrier mobility (>2000 cm2/Vs) and low carrier density (<0.9 × 1013 cm−2) in quasi-free-standing bilayer samples relative to monolayer samples. Also, bilayers on homoepitaxial layers are found to be superior in quality compared to bilayers grown directly on SI substrates.  相似文献   

12.
A heat-resistant SiC ceramic was developed from submicron β-SiC powders using a small amount (1 wt.%) of AlN–Lu2O3 additives at a molar ratio of 60:40. Observation of the ceramic using high-resolution transmission electron microscopy (HRTEM) showed a lack of amorphous films in both homophase (SiC–SiC) boundaries and junction areas. The junction phase consisted of Lu–Si–O elements, and the homophase boundaries contained Lu, Al, O, and N atoms as segregates. The ceramic maintained its room temperature (RT) strength up to 1600 °C. The flexural strength of the ceramic was 630 MPa and 633 MPa at RT and 1600 °C, respectively.  相似文献   

13.
Epitaxial graphene growth was performed on the Si-terminated face of 4H-, 6H-, and 3C-SiC substrates by silicon sublimation from SiC in argon atmosphere at a temperature of 2000 °C. Graphene surface morphology, thickness and band structure have been assessed by using atomic force microscopy, low-energy electron microscopy, and angle-resolved photoemission spectroscopy, respectively. Differences in the morphology of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. The uniformity of silicon sublimation is a decisive factor for obtaining large area homogenous graphene. It is also shown that a lower substrate surface roughness results in more uniform step bunching with a lower distribution of step heights and consequently better quality of the grown graphene. Large homogeneous areas of graphene monolayers (over 50 × 50 μm2) have been grown on 3C-SiC (1 1 1) substrates. The comparison with the other polytypes suggests a similarity in the surface behaviour of 3C- and 6H-SiC.  相似文献   

14.
A reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks (RHs) and SiC powder in different ratios is reported, in which FeSi2 alloy was used as infiltrant. The preforms were heat-treated at 1550 °C for 6 h prior to the infiltration. The coked RHs, which are composed of SiO2 and C, were converted to SiC and poorly crystallized C by carbothermal reduction during the heat treatment. The study of the microstructure and mechanical properties of the composites shows that molten Fe–Si alloy had good wetting of the heat-treated preforms and adequate infiltration properties. Free carbon in the preform reacted with Si in the molten FeSi2 during infiltration forming new SiC, the composition of the intermetallic liquid being moved towards that of FeSi. As a result, the infiltrated composites are composed of SiC, FeSi2 and FeSi phases. Vickers hardness, elastic modulus, three-point flexural strength and indentation fracture toughness of the composites are found to increase with SiC additions up to 30% w/w in the preforms, reaching the values of 18.2 GPa, 290 GPa, 213 MPa and 4.9 MPa m1/2, respectively. With the SiC addition further raised to 45% w/w, the elastic modulus, flexural strength and fracture toughness of the composite turned down probably due to high residual stress and hence the more intense induction of microcracks in the composite. De-bonding of SiC particles pulled out of the Fe–Si matrix, transgranular fracture of part of the SiC particles and in the Fe–Si matrix, and crack bridging all exist in the fracture process of the composites.  相似文献   

15.
The influence of additive composition on the electrical resistivity of hot-pressed liquid-phase sintered (LPS)-SiC was investigated using AlN–RE2O3 (RE = Sc, Nd, Eu, Gd, Ho, Er, Lu) mixtures at a molar ratio of 60:40. It was found that all specimens could be sintered to densities >95% of the theoretical density by adding 5 wt% in situ-synthesized nano-sized SiC and 1 wt% AlN–RE2O3 additives. Six out of seven SiC ceramics showed very low electrical resistivity on the order of 10?4 Ω m. This low electrical resistivity was attributed to the growth of nitrogen-doped SiC grains and the confinement of non-conducting RE-containing phases in the junction areas. The SiC ceramics sintered with AlN–Lu2O3 showed a relatively high electrical resistivity (~10?2 Ω m) due to its lower carrier density (~1017 cm?3), which was caused by the growth of faceted grains and the resulting weak interface between SiC grains.  相似文献   

16.
CVD silicon carbide was brazed to itself using two Ag–Cu–Ti braze alloys reinforced with SiC particulates to control braze thermal expansion and enhance joint strength. Powders of the braze alloys, Ticusil (composition in wt%: Ag–26.7Cu–4.5Ti, TL: 900 °C) and Cusil-ABA (Ag–35.3Cu–1.75Ti, TL: 815 °C) were pre-mixed with 5, 10 and 15 wt% SiC particulates (~20–30 μm) using glycerin to create braze pastes that were applied to the surfaces to be joined. Joints were vacuum brazed and examined using optical microscopy (OM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and the Knoop hardness test. The SiC particles were randomly distributed in the braze matrix and bonded to it via reaction with the titanium from the braze alloy. Titanium together with Si and C segregated at the particle/braze interface, and promoted nucleation and precipitation of the Cu-rich secondary phase on particle surfaces. The Si–Ti–C-rich reaction layers also formed at the interface between CVD SiC substrate and the braze alloy. The loss of Ti in the reaction with SiC particulates did not impair either the bond quality or the thickness of the reaction layer on the CVD SiC substrate. Microhardness measurements showed that the dispersed SiC particulates lowered the braze hardness by depleting the braze matrix of Ti. Theoretical calculations indicated the CTE of the braze to decrease by nearly 45–60% with the incorporation of about 45 vol% SiC.  相似文献   

17.
The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk SiC for cost reduction and to better integrate the material with Si based electronic devices. In this paper, we present a thorough in situ study of the growth of epitaxial graphene on 3C SiC (1 1 1)/Si (1 1 1) substrates via high temperature annealing (ranging from 1125 to 1375 °C) in ultra high vacuum (UHV). The quality and number of graphene layers have been investigated by using X-ray Photoelectron Spectroscopy (XPS), while the surface characterization have been studied by Scanning Tunnelling Microscopy (STM). Ex-situ Raman spectroscopy measurements confirm our findings, which demonstrate the exponential dependence of the number of graphene layers on the annealing temperature.  相似文献   

18.
We have combined first-principle calculations of charge transfer at the Si/Si3N4 interface with the interaction potential models for bulk Si and Si3N4 to produce a model for the Si/Si3N4 interface. Using these interatomic potentials, million atom molecular dynamics simulations have been performed to characterize the structure of Si(111)/Si3N4(0001) and the Si(111)/a-Si3N4 interfaces. Ten million-atom simulations are performed using multiresolution molecular-dynamics method on parallel computers. Atomic stress distributions are determined in a 54 nm nanopixel on a 0·1 μm silicon substrate. Effects of surfaces, edges, and lattice mismatch at the Si(111)/Si3N4(0001) interface on the stress distributions are also investigated. Stresses are found to be highly inhomogeneous in the nanopixel—the top surface of silicon nitride has a compressive stress of +3 GPa and the stress is tensile, −1 GPa, in silicon below the inter-face. These simulation methods can also be applied to other semiconductor/ceramic interfaces as well as to metal/ceramic and ceramic/ceramic interfaces.  相似文献   

19.
In this paper, Ti3Si(Al)C2 was introduced into dense SiC/SiC to improve the mechanical and electromagnetic interference (EMI) shielding properties. In order to reveal the effect of Ti3Si(Al)C2, dense SiC/SiC-Ti3Si(Al)C2 and dense SiC/SiC without Ti3Si(Al)C2 were fabricated. Owing to the plastic deformation toughening mechanism of Ti3Si(Al)C2, SiC/SiC-Ti3Si(Al)C2 performs a new damage mode characterized by matrix/matrix (m/m) debonding. High interfacial shear strength (IFSS) due to large thermal residual stress (TRS) is weakened by m/m debonding. This new mode also brings high effective volume fraction of loading fibers and long path of crack propagation. Hence SiC/SiC-Ti3Si(Al)C2 exhibits higher flexural strength (503 MPa) and fracture toughness (23.7 MPa · m1/2) than the dense SiC/SiC without Ti3Si(Al)C2. In addition, dense SiC/SiC-Ti3Si(Al)C2 shows excellent electromagnetic interference shielding effectiveness (EMI SE, 43.0 dB) in X-band, revealing great potential as thermo-structural and functional material.  相似文献   

20.
Highly resistive SiC ceramics were prepared by hot pressing α-SiC powders with Al2O3-Y2O3 additives with a 4:1 molar ratio. X-ray diffraction patterns, Raman spectra, electron probe microanalysis (EMPA), and scanning electron microscopy (SEM) images revealed that the bulk SiC ceramics consisted mostly of micron-sized 6H-SiC grains along with Y2O3 and Si clusters. As the additive content increased from 1 to 10 vol%, the electrical resistivity of the ceramics increased from 3.0 × 106 to 1.3 × 108 Ω cm at room temperature. Such high resistivity is ascribed to Al2O3 in which Al impurities substituting Si site act as deep acceptors for trapping carriers. More resistive α-SiC ceramics were produced by adding AlN instead of Al2O3. The highest resistivity (1.3 × 1010 Ω cm) was achieved by employing 3 vol% AlN-Y3Al5O12 (yttrium aluminum garnet, YAG) as an additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号