首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we present two new multiobjective proposals based on ant colony optimisation and random greedy search algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. Some variants of these algorithms have been compared in order to find out the impact of different design configurations and the use of heuristic information. Good performance is shown after applying every algorithm to 10 well-known problem instances in comparison to NSGA-II. In addition, those algorithms which have provided the best results have been employed to tackle a real-world problem at the Nissan plant, located in Spain.  相似文献   

2.
The present study introduces a multi-objective genetic algorithm (MOGA) to solve a mixed-model assembly line problem (MMALBP), considering cycle time (CT) and the number of stations simultaneously. A mixed-model assembly line is one capable of producing different types of products to respond to different market demands, while minimizing on capital costs of designing multiple assembly lines. In this research, according to the stochastic environment of production systems, a mixed-model assembly line has been put forth in a make-to-order (MTO) environment. Furthermore, a MOGA approach is presented to solve the corresponding balancing problem and the decision maker is provided with the subsequent answers to pick one based on the specific situation. Finally, a comparison is carried out between six multi-objective evolutionary algorithms (MOEA) so as to determine the best method to solve this specific problem.  相似文献   

3.
Time and space assembly line balancing considers realistic multiobjective versions of the classical assembly line balancing industrial problems involving the joint optimization of conflicting criteria such as the cycle time, the number of stations, and/or the area of these stations. In addition to their multi-criteria nature, the different problems included in this field inherit the precedence constraints and the cycle time limitations from assembly line balancing problems, which altogether make them very hard to solve. Therefore, time and space assembly line balancing problems have been mainly tackled using multiobjective constructive metaheuristics. Global search algorithms in general - and multiobjective genetic algorithms in particular - have shown to be ineffective to solve them up to now because the existing approaches lack of a proper design taking into account the specific characteristics of this family of problems. The aim of this contribution is to demonstrate the latter assumption by proposing an advanced multiobjective genetic algorithm design for the 1/3 variant of the time and space assembly line balancing problem which involves the joint minimization of the number and the area of the stations given a fixed cycle time limit. This novel design takes the well known NSGA-II algorithm as a base and considers the use of a new coding scheme and sophisticated problem specific operators to properly deal with the said problematic questions. A detailed experimental study considering 10 different problem instances (including a real-world instance from the Nissan plant in Barcelona, Spain) will show the good yield of the new proposal in comparison with the state-of-the-art methods.  相似文献   

4.
This paper deals with multi-objective optimization of a single-model stochastic assembly line balancing problem with parallel stations. The objectives are as follows: (1) minimization of the smoothness index and (2) minimization of the design cost. To obtain Pareto-optimal solutions for the problem, we propose a new solution algorithm, based on simulated annealing (SA), called m_SAA. m_SAA implements a multinomial probability mass function approach, tabu list, repair algorithms and a diversification strategy. The effectiveness of m_SAA is investigated comparing its results with those obtained by another SA (using a weight-sum approach) on a suite of 24 test problems. Computational results show that m_SAA with a multinomial probability mass function approach is more effective than SA with weight-sum approach in terms of the quality of Pareto-optimal solutions. Moreover, we investigate the effects of properties (i.e., the tabu list, repair algorithms and diversification strategy) on the performance of m_SAA.  相似文献   

5.
Mixed-model assembly lines allow for the simultaneous assembly of a set of similar models of a product, which may be launched in the assembly line in any order and mix. As current markets are characterized by a growing trend for higher product variability, mixed-model assembly lines are preferred over the traditional single-model assembly lines.

This paper presents a mathematical programming model and an iterative genetic algorithm-based procedure for the mixed-model assembly line balancing problem (MALBP) with parallel workstations, in which the goal is to maximise the production rate of the line for a pre-determined number of operators.

The addressed problem accounts for some relevant issues that reflect the operating conditions of real-world assembly lines, like zoning constraints and workload balancing and also allows the decision maker to control the generation of parallel workstations.  相似文献   


6.
This paper presents a new hybrid improvement heuristic approach to simple straight and U-type assembly line balancing problems which is based on the idea of adaptive learning approach and simulated annealing. The proposed approach uses a weight parameter to perturb task priorities of a solution to obtain improved solutions. The weight parameters are then modified using a learning strategy. The maximization of line efficiency (i.e., the minimization of the number of stations) and the equalization of workloads among stations (i.e., the minimization of the smoothness index or the minimization of the variation of workloads) are considered as the performance criteria. In order to clarify the proposed solution methodology, a well known problem taken from literature is solved. A computational study is conducted by solving a large number of benchmark problems available in the literature to compare the performance of the proposed approach to the existing methods such as simulated annealing and genetic algorithms. Some test instances taken from literature are also solved by the proposed approach. The results of the computational study show that the proposed approach performs quite effectively. It also yields optimal solutions for all test problems within a short computational time.  相似文献   

7.
Previous studies of the two-sided assembly line balancing problem assumed equal relationships between each two tasks assignable to a side of the line. In practice, however, this relationship may be related to such factors as the distance between the implementation place and the tools required for implementation. We know that the more relationships exist between the tasks assigned to each station, the more efficient will be the assembly line. In this paper, we suggest an index for calculating the value of the relationship between each two tasks, and define a performance criterion called ‘assembly line tasks consistency’ for calculating the average relationship between the tasks assigned to the stations of each solution. We propose a simulated annealing algorithm for solving the two-sided assembly line balancing problem considering the three performance criteria of number of stations, number of mated-stations, and assembly line tasks consistency. Also, the simulated annealing algorithm is modified for solving the two-sided assembly line balancing problem without considering the relationships between tasks. This modification finds five new best solutions for the number of stations performance criterion and ten new best solutions for the number of mated-stations performance criterion for benchmark instances.  相似文献   

8.
This paper presents three proposals of multiobjective memetic algorithms to solve a more realistic extension of a classical industrial problem: time and space assembly line balancing. These three proposals are, respectively, based on evolutionary computation, ant colony optimisation, and greedy randomised search procedure. Different variants of these memetic algorithms have been developed and compared in order to determine the most suitable intensification–diversification trade-off for the memetic search process. Once a preliminary study on nine well-known problem instances is accomplished with a very good performance, the proposed memetic algorithms are applied considering real-world data from a Nissan plant in Barcelona (Spain). Outstanding approximations to the pseudo-optimal non-dominated solution set were achieved for this industrial case study.  相似文献   

9.
In the very few recently published paper by Alavidoost et al. [1], they proposed a novel fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problem, in continue of their previous presented work by Alavidoost et al. [2], as a modification on genetic algorithm for assembly line balancing with fuzzy processing times. Despite the fact that both of them are well-written, and completely discussed their contributions, this note looks forward to collate these papers together. Likewise provides the correct order of the figures in [1] matching with their corresponding caption.  相似文献   

10.
Two-sided assembly lines are especially used at the assembly of large-sized products, such as trucks and buses. In this type of a production line, both sides of the line are used in parallel. In practice, it may be necessary to optimize more than one conflicting objectives simultaneously to obtain effective and realistic solutions. This paper presents a mathematical model, a pre-emptive goal programming model for precise goals and a fuzzy goal programming model for imprecise goals for two-sided assembly line balancing. The mathematical model minimizes the number of mated-stations as the primary objective and it minimizes the number of stations as a secondary objective for a given cycle time. The zoning constraints are also considered in this model, and a set of test problems taken from literature is solved. The proposed goal programming models are the first multiple-criteria decision-making approaches for two-sided assembly line balancing problem with multiple objectives. The number of mated-stations, cycle time and the number of tasks assigned per station are considered as goals. An example problem is solved and a computational study is conducted to illustrate the flexibility and the efficiency of the proposed goal programming models. Based on the decision maker's preferences, the proposed models are capable of improving the value of goals.  相似文献   

11.
In this paper, a mixed-model PC camera assembly line balancing case study is presented. The aim of the study is to establish different line configurations, for varying levels of demand. In the first stage of the study, a heuristic procedure previously developed by some of the authors, based on the simulated annealing meta-heuristic, is used to derive line configurations with a minimum number of workstations and a smooth workload balance between and within the workstations. In the second stage, the solutions provided by the heuristic are used as an input to discrete event simulation models in which certain manufacturing parameters that analytical procedures have difficulty to accommodate, namely, stochastic times, machine breakdowns, rework, etc. are introduced. These simulation models derive different performance measures (e.g. flow times and resources utilization) that provide operational support and help fine-tune the line configurations.This paper reports on the collaborative study between the Department of Economics, Management and Industrial Engineering of University of Aveiro and a major manufacturer of electronic consumer goods.  相似文献   

12.
Conventional community detection approaches in complex network are based on the optimization of a priori decision, i.e., a single quality function designed beforehand. This paper proposes a posteriori decision approach for community detection. The approach includes two phases: in the search phase, a special multi-objective evolutionary algorithm is designed to search for a set of tradeoff partitions that reveal the community structure at different scales in one run; in the decision phase, three model selection criteria and the Possibility Matrix method are proposed to aid decision makers to select the preferable solutions through differentiating the set of optimal solutions according to their qualities. The experiments in five synthetic and real social networks illustrate that, in one run, our method is able to obtain many candidate solutions, which effectively avoids the resolution limit existing in priori decision approaches. In addition, our method can discover more authentic and comprehensive community structures than those priori decision approaches.  相似文献   

13.
Multi-criteria decision making for assembly line balancing   总被引:1,自引:0,他引:1  
Assembly line balancing often has significant impact on performance of manufacturing systems, and is usually a multiple-objective problem. Neither an algorithmic nor a procedural assembly line balancing methodology is usually effective in solving these problems. This article proposes a data envelopment analysis (DEA) approach to solve an assembly line balancing problem. A computer-aided assembly line balancing tool as Flexible Line Balancing software is used to generate a considerable number of solutions alternatives as well as to generate quantitative decision-making unit outputs. The quantitative performance measures were considered in this article. Then DEA was used to solve the multiple-objective assembly line balancing problem. An illustrative example shows the effectiveness of the proposed methodology.  相似文献   

14.
基于决策者偏好区域的多目标粒子群算法研究*   总被引:5,自引:3,他引:2  
多目标优化问题中,决策者往往只对目标空间的某一区域感兴趣,因此需要在这一特定的区域能够得到比较稠密的Pareto解,但传统的方法却找出全部的Pareto前沿,决策效率不高。针对该问题,给出了基于决策者偏好区域的多目标粒子群优化算法。它只求出与决策者偏好区域相关的部分Pareto最优集,从而减少了进化代数,加快收敛速度,有利于决策者进行更有效的决策。算法把解与偏好区域的距离作为影响引导者选择和剪枝策略的一个因素,运用格栅方法实现解在Pareto边界分布的均匀性。仿真结果表明该算法是有效的。  相似文献   

15.
Mixed-model assembly lines are production systems at which two or more models are assembled sequentially at the same line. For optimal productivity and efficiency, during the design of these lines, the work to be done at stations must be well balanced satisfying the constraints such as time, space and location. This paper deals with the mixed-model assembly line balancing problem (MALBP). The most common objective for this problem is to minimize the number of stations for a given cycle time. However, the problem of capacity utilization and the discrepancies among station times due to operation time variations are of design concerns together with the number of stations, the line efficiency and the smooth production. A multi-objective ant colony optimization (MOACO) algorithm is proposed here to solve this problem. To prove the efficiency of the proposed algorithm, a number of test problems are solved. The results show that the MOACO algorithm is an efficient and effective algorithm which gives better results than other methods compared.  相似文献   

16.
In multi-objective particle swarm optimization (MOPSO), a proper selection of local guides significantly influences detection of non-dominated solutions in the objective/solution space and, hence, the convergence characteristics towards the Pareto-optimal set. This paper presents an algorithm based on simple heuristics for selection of local guides in MOPSO, named as HSG-MOPSO (Heuristics-based-Selection-of-Guides in MOPSO). In the HSG-MOPSO, the set of potential guides (in a PSO iteration) consists of the non-dominated solutions (which are normally stored in an elite archive) and some specifically chosen dominated solutions. Thus, there are two types of local guides in the HSG-MOPSO, i.e., non-dominated and dominated guides; they are named so as to signify whether the chosen guide is a non-dominated or a dominated solution. In any iteration, a guide, from the set of available guides, is suitably selected for each population member. Some specified proportion of the current population members follow their respective nearest non-dominated guides and the rest follow their respective nearest dominated guides. The proposed HSG-MOPSO is firstly evaluated on a number of multi-objective benchmark problems along with investigations on the controlling parameters of the guide selection algorithm. The performance of the proposed method is compared with those of two well-known guide selection methods for evolutionary multi-objective optimization, namely the Sigma method and the Strength Pareto Evolutionary Algorithm-2 (SPEA2) implemented in PSO framework. Finally, the HSG-MOPSO is evaluated on a more involved real world problem, i.e., multi-objective planning of electrical distribution system. Simulation results are reported and analyzed to illustrate the viability of the proposed guide selection method for MOPSO.  相似文献   

17.
Two-sided assembly line is often designed to produce large-sized high-volume products such as cars, trucks and engineering machinery. However, in real-life production process, besides the elementary constraints in the one-sided assembly line, additional constraints, such as zoning constraints, positional constraints and synchronous constraints, may occur in the two-sided assembly line. In this paper, mathematical formulation of balancing multi-objective two-sided assembly line with multiple constraints is established, and some practical objectives, including maximization of the line efficiency, minimization of the smoothness index and minimization of the total relevant costs per product unit (Tcost), have been considered. A novel multi-objective optimization algorithm based on improved teaching–learning-based optimization (ITLBO) algorithm is proposed to obtain the Pareto-optimal set. In the ITLBO algorithm, teacher and learner phases are modified for the discrete problem, and late acceptance hill-climbing is integrated into a novel self-learning phase. A novel merging method is proposed to construct a new population according to the ordering relation between the original and evolutionary population. The proposed algorithm is tested on the benchmark instances and a practical case. Experimental results, compared with the ones computed by other algorithm and in current literature, validate the effectiveness of the proposed algorithm.  相似文献   

18.
Infrastructure comprises the most fundamental facilities and systems serving society. Because infrastructure exists in economic, social, and environmental contexts, all lifecycle phases of such facilities should maximize utility for society, occupants, and designers. However, due to uncertainties associated with the nature of the built environment, the economic, social, and environmental (i.e., triple bottom line) impacts of infrastructure assets must be described as probabilistic. For this reason, optimization models should aim to maximize decision maker utilities with respect to multiple and potentially conflicting probabilistic decision criteria. Although stochastic optimization and multi-objective optimization are well developed in the field of operations research, their intersection (multi-objective optimization under uncertainty) is much less developed and computationally expensive. This article presents a computationally efficient, adaptable, multi-objective decision support system for finding optimal infrastructure design configurations with respect to multiple probabilistic decision criteria and decision maker requirements (utilities). The proposed model utilizes the First Order Reliability Method (FORM) in a systems reliability approach to assess the reliability of alternative infrastructure design configurations with regard to the probabilistic decision criteria and decision maker defined utilities, and prioritizes the decision criteria that require improvement. A pilot implementation is undertaken on a nine-story office building in Los Angeles, California to illustrate the capabilities of the framework. The results of the pilot implementation revealed that “high-performing” design configurations (with higher initial costs and lower failure costs) had a higher probability of meeting the decision maker’s preferences than more traditional, low initial cost configurations. The proposed framework can identify low-impact designs that also maximize decision maker utilities.  相似文献   

19.
This article introduces three new multi-objective cooperative coevolutionary variants of three state-of-the-art multi-objective evolutionary algorithms, namely, Non-dominated Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Multi-objective Cellular Genetic Algorithm (MOCell). In such a coevolutionary architecture, the population is split into several subpopulations or islands, each of them being in charge of optimizing a subset of the global solution by using the original multi-objective algorithm. Evaluation of complete solutions is achieved through cooperation, i.e., all subpopulations share a subset of their current partial solutions. Our purpose is to study how the performance of the cooperative coevolutionary multi-objective approaches can be drastically increased with respect to their corresponding original versions. This is specially interesting for solving complex problems involving a large number of variables, since the problem decomposition performed by the model at the island level allows for much faster executions (the number of variables to handle in every island is divided by the number of islands). We conduct a study on a real-world problem related to grid computing, the bi-objective robust scheduling problem of independent tasks. The goal in this problem is to minimize makespan (i.e., the time when the latest machine finishes its assigned tasks) and to maximize the robustness of the schedule (i.e., its tolerance to unexpected changes on the estimated time to complete the tasks). We propose a parallel, multithreaded implementation of the coevolutionary algorithms and we have analyzed the results obtained in terms of both the quality of the Pareto front approximations yielded by the techniques as well as the resulting speedups when running them on a multicore machine.  相似文献   

20.
As the disassembly of end-of-life products is affected by several dynamic and uncertain issues, many mathematical models and solution approaches have been established. However, with more extended objectives, constraints and different methods of disassembly, inconsistent models relating to product representations and types of disassembly lines have become the main barriers for the transfer of research to practise. In this paper, a systematic overview of recent models to summarise the input data, parameters, decision variables, constraints and objectives of disassembly line balancing are presented. After discussing the adaptation and extensibility of these models for different environments, a unified encoding scheme is designed to apply typical multi-objective evolutionary algorithms on this problem with extensive decision variables and seven significant objectives. Algorithm comparison on four typical cases is then carried out based on seven commonly used products to verify the optimisation process for the integrated version of existing models and demonstrate the overall performance of the typical multi-objective evolutionary algorithms on this problem. Experimental results can be a baseline for further algorithm design and practical algorithm selection on these disassembly line balancing scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号