首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以大蒜素为模型药物,采用复凝聚法制备了海藻酸钠/明胶/壳聚糖复合微球,考察了不同条件对微球溶胀性、载药性能和缓释性能等指标的影响。结果表明,明胶和海藻酸钠(质量比为1∶3)为2%,大蒜素投入量与混合胶比为1∶2时,制备的载药微球(DSGCM)外形规则,粒径分布在0.8~0.9mm之间,载药量为24.3%,包封率为69.4%,复合微球具有p H敏感性,在p H=7.4介质中微球溶胀率达到450%,药物释放过程符合Higuchi方程,明胶的加入可以延缓DSGCM复合微球的药物释放性能。  相似文献   

2.
朱海云  蒋志慧  张保华 《农药》2020,59(3):180-183
[目的]制备阿维菌素海藻酸钙微球,并评价其相关性能。[方法]采用内源乳化法制备阿维菌素海藻酸钙微球,以溶胀率、产率为考察指标,结合正交设计试验对微球的制备工艺进行优化,并利用光学显微镜和傅立叶变换红外光谱仪对微球进行了观察和表征。[结果]阿维菌素海藻酸钙微球最佳工艺为海藻酸钠和Span 80的质量浓度均为15 g/L、海藻酸钠与CaCO3质量比3∶1、水油两相体积比为1∶2。所制备的微球外观呈规则球形,载药率和包封率分别达到84.21%和20.16%。体外药物释放试验表明,阿维菌素海藻酸钙微球48 h累计释放率为78.61%。[结论]所制备的阿维菌素海藻酸钙微球具有良好的缓释性,提高了农药的利用率。  相似文献   

3.
采用乳化-化学交联法制备壳聚糖微球及壳聚糖-明胶复合物微球,并通过实验确定了最佳的成球条件:即m(壳聚糖)∶m(明胶)=2∶1 span-80用量为10g/100 mL,乳化剪切速度为600 r/min,交联率为60%,固化时间为40min.该方法制备的壳聚糖微球球形圆滑,粘连度小,亲水性好.此外在对壳聚糖药物缓释的研究基础上,对壳聚糖复合明胶后,对药物缓释的影响情况进行了研究探索.以生物可降解性和生物相容性好的壳聚糖和明胶为载体承载阿司匹林,研制出阿司匹林壳聚糖-明胶微球,为阿司匹林提供了一种理想的缓释载体.  相似文献   

4.
以壳聚糖和明胶为原料,span 80为乳化剂,戊二醛为交联剂,采用乳化交联法制备了壳聚糖/明胶复合微球并用于Cr(Ⅵ)的吸附。考察了复合微球的各制备因素对微球形貌的影响,通过单因素分析研究了壳聚糖与明胶的比例、乳化剂用量、乳化时间对复合微球吸附性能的影响。结果表明,壳聚糖与明胶的比例为1∶2、span80用量为6mL、乳化时间为50min时,制备的复合微球对Cr(Ⅵ)的吸附性能良好,吸附量较大,Cr(Ⅵ)的去除率可达95.3%。  相似文献   

5.
张恒頔  胡立立  钟毅  罗艳 《精细化工》2015,32(3):267-271,276
为获得单分散性PLGA磁性微球,以纳米四氧化三铁明胶分散液作为内水相(W1),PLGA(聚乳酸羟基乙酸共聚物)的二氯甲烷溶液作为油相(O),PVA(聚乙烯醇)水溶液作为外水相(W2),利用T型微通道并采用复合乳液法制备PLGA磁性微球,考察油相(O)质量浓度、外水相(W2)质量分数、流速比及油相与内水相体积比对微球制备的影响。借助FTIR、SEM、光学显微镜及VSM(振动样品磁强计)对磁性微球组分、形貌、粒径分布和磁学性能进行表征;并以阿司匹林作为药物模型进行缓释性测试。结果表明:油相中PLGA质量浓度为0.050kg/L,外水相(W2)中PVA质量分数为1%及2%,流速比v(W2)∶v(W1/O)=120∶1且体积比V(O)∶V(W1)=2∶1时可均匀成球,其粒径分布系数CV值仅为4.66%,表现出良好的单分散性;此时,比饱和磁化强度可达1.52emu/g,兼具优异顺磁性。制得的载药微球在60 h内表现出阶段性匀速释放,且有较好的磁响应性,有望用于磁响应性药物载体。  相似文献   

6.
董堃华  刘哲鹏  陈冰玉  贺文军  瞿良 《应用化工》2012,41(6):1048-1050,1055
运用复乳法制备奥曲肽PLGA长效生物可降解微球,并用正交法优化微球制备工艺。利用HPLC、显微镜、激光粒度仪等对微球进行综合质量研究。结果表明,复乳法制备奥曲肽微球的最佳工艺参数为:内水相药物与中油相PLGA的质量比为1∶5,中油相PLGA的浓度为10%,外水相乳化剂为1%的22 000分子量聚乙烯(PVA)水溶液,中油相与外水相的体积比不小于1∶50,复乳化采用机械搅拌法,搅拌速度为1 200 r/min。在该工艺条件下制得的微球,包封率为35.1%,载药量为2.98%,平均粒径为26.3μm,微球外观圆整,形态良好。  相似文献   

7.
以乳化溶剂挥发法制备伊维菌素(IVM)聚乳酸(PLA)微球,用该微球制备注射液并进行质量控制研究。采用Central Composite实验设计,对微球制备中的搅拌速度、投料比m(IVM)∶m(PLA)、聚乙烯醇(PVA)质量分数3个因素进行响应面优化;采用L16(34)正交实验对助悬体系进行优化;制备IVM缓释微球注射液并进行质量评价。结果表明:优化后的搅拌速度为651 r/min,投料比为7∶16,PVA质量分数为1.47%,该条件下微球载药率为29.4%;优化后的助悬体系中微球粒径范围d≤80μm,微球、吐温20与羧甲基纤维素钠含量(质量分数,下同)分别为2.5%、1.5%、1%,在该条件下注射液沉降体积比为91.5%;经测定注射液的平均p H=7.2,体外20 d缓释测定,缓释效果明显,稳定性良好。  相似文献   

8.
《农药》2015,(8)
[目的]筛选甲维·高氯氟复配微球制备中最优的乳化剂及其质量浓度,为该复配微球的进一步研究奠定基础。[方法]采用乳化溶剂挥发法在不同乳化剂和不同质量浓度条件下制备微球,比较分析所得微球的形态、粒径、跨距、包封率和载药量。[结果]当以明胶/阿拉伯胶(1∶1)为乳化剂,质量浓度为15 g/L时,制备的微球性能最优。[结论]乳化剂种类和质量浓度的选择在乳化溶剂挥发法中尤为关键。  相似文献   

9.
目的构建载药明胶微球缓释系统,并分析其体外缓释效果。方法以成球率、微球粒径均匀度、不黏连率为考察指标,正交设计优化明胶微球缓释系统的制备工艺,并以干扰素α2b(IFNα2b)为模型药物制备干扰素明胶缓释微球,通过载药试验确认其载药工艺后进行体外缓释效果观察。结果构建的载药明胶微球缓释系统成球率为(92.58±1.18)%,微球粒径均匀度为(82±0.2)%,不黏连率为(4.67±1.15)%;每克干扰素明胶缓释微球最佳载药剂量为每克微球4×10~6 IU,可在体外缓释64 h。结论载药明胶微球缓释系统制备工艺稳定,操作简便,产品体外缓释效果良好,可在缓释剂型领域广泛应用。  相似文献   

10.
以苯乙烯(St)为单体,丙烯酸松香与甲基丙烯酸缩水甘油酯(GMA)的酯化物(RAG)为交联剂,明胶为分散剂,偶氮二异丁腈(AIBN)为引发剂,采用悬浮聚合法制备了含羟基的松香基聚合物微球。探讨了分散剂用量、单体配比及搅拌速度对微球性能的影响。利用红外光谱、热重分析、光学显微镜和扫描电镜等对聚合物微球进行测试表征。结果表明:成功制备了含羟基的松香基聚合物微球,微球的热稳定性、球形和分散性较好。在m_(RAG)∶m_(St)=1∶1,引发剂AIBN用量为混合单体的1%,分散剂明胶用量为混合单体的6%,搅拌速度为500r/min,85℃下反应3h,升温至90℃熟化2h时,可以制备外观最佳的微球。当固液比为0.6g/L,pH=4.5,298K吸附4h时,该微球对苯甲酸的吸附量达到172.3mg/g。  相似文献   

11.
以壳聚糖为原料,采用乳化交联技术制备壳聚糖止血微球。在单因素实验结果的基础上,采用响应面法优化壳聚糖止血微球的制备条件,通过体外凝血法对其止血活性进行评价。结果表明,最优制备工艺条件为:壳聚糖浓度1.4%,壳聚糖分子量600 k Da和戊二醛与壳聚糖质量比1∶1。在此条件下,微球平均溶胀率为346.56%,与理论预测相当吻合;止血微球具有良好的外观形貌,分散性好;红外分析表明,壳聚糖止血微球已经成功地进行了化学交联,具有稳定的空间结构;壳聚糖微球具有显著的促凝血活性,呈现剂量相关性。将为开发新型壳聚糖高效止血材料奠定基础。  相似文献   

12.
以壳聚糖为原料,采用乳化交联技术制备壳聚糖止血微球。在单因素实验结果的基础上,采用响应面法优化壳聚糖止血微球的制备条件,通过体外凝血法对其止血活性进行评价。结果表明,最优制备工艺条件为:壳聚糖浓度1.4%,壳聚糖分子量600 k Da和戊二醛与壳聚糖质量比1∶1。在此条件下,微球平均溶胀率为346.56%,与理论预测相当吻合;止血微球具有良好的外观形貌,分散性好;红外分析表明,壳聚糖止血微球已经成功地进行了化学交联,具有稳定的空间结构;壳聚糖微球具有显著的促凝血活性,呈现剂量相关性。将为开发新型壳聚糖高效止血材料奠定基础。  相似文献   

13.
目的:制备柚皮苷-PLGA缓释微球,并对其性能进行体外评价.为促骨生长类药物的长效制剂的设计与研发奠定基础.方法:以聚乙烯醇(PVA)、聚乳酸-羟基乙酸共聚物(PLGA)为复合载体材料,采用乳化溶剂挥发法制备柚皮苷-PLGA微球,以微球外观形态、包封率为主要评价指标,单因素投料比(1︰5、1︰10、1︰15)、转速(1...  相似文献   

14.
用乳化 溶剂挥发法制备尼莫地平(nimodipine,NMP)PLGA微球,在油相中引入石油醚与二氯甲烷作混合溶剂,考察了石油醚对微球性质的影响。石油醚与二氯甲烷的不同体积比(0,1∶10,1∶8,1∶4和1∶2)可调节微球的固化速率,从而得到不同特性的载药微球。混合比为1∶10时,微球突释效应减轻,包封率显著提高。以PLGA浓度、投药比及混合溶剂比为考察因素进行了正交优化设计。结果表明优化后微球包封率提高52.2%,突释率降低58.8%,药物以无定形态存在于微球中,与单一溶剂组相比,微球形态有较大改善,微球缓释效应显著增强。  相似文献   

15.
目的初步建立明胶微球缓释系统冻干工艺,并检测其溶解和释放效果。方法制备明胶微球,复溶后,分别加入终浓度0. 5%蔗糖、0. 5%葡萄糖及终浓度0. 5%及0. 25%明胶作为保护剂,进行冻干后,再分别加入100 mL蒸馏水复溶,比较复溶效果,筛选最适保护剂;将小鼠分为冻干IFN明胶微球缓释系统组(IFN-FGMS组)、IFN明胶微球缓释系统组(IFN-GMS组)、IFN组,每组10只,分别经后肢肌肉注射,2. 5×10~4 IU/(mL·只),每隔1 h经眼眶静脉丛采血,连续27 h,分离血清,检测IFNα2b活性。结果终浓度0. 5%蔗糖及0. 5%葡萄糖组可见不溶团块,终浓度0. 5%明胶组微溶,0. 25%明胶组明胶微球澄清透明,确定0. 25%明胶为最适冻干保护剂。IFN-FGMS组达峰时间Tmax分别为IFN-GMS和IFN组的1. 5和3倍,血药峰浓度分别为IFN-GMS和IFN组的82. 7%和62. 8%,血药浓度半衰期为IFN-GMS和IFN组的1. 6和5. 4倍。结论冻干微球缓释系统的缓释作用明显优于未冻干微球缓释系统。  相似文献   

16.
郭英  李酽  谢静  蔡娇 《化学世界》2007,48(1):38-41,48
以自制阿司匹林为药物,壳聚糖为载体,采用乳化-化学交联法制备了阿司匹林-壳聚糖载药微球,确定了阿司匹林-壳聚糖载药微球的制备工艺条件,探讨搅拌速度、阿司匹林/壳聚糖质量比、交联剂戊二醛、乳化剂Span-80用量对微球的药物包封率、载药量和释药性能的影响。研究结果表明,室温条件下,以液体石蜡为介质,选用3%的壳聚糖冰醋酸溶液、按阿司匹林∶壳聚糖=1.5∶1、4%的戊二醛为交联剂、Span-80用量为体积比6%、中等搅拌速度制备出的微球药物包封率可达79%,微球粒径最小可达20 nm,制得的载药微球在16 h内对药物有良好的缓释作用,在25 h之内仍存在缓药效果。  相似文献   

17.
采用快速膜乳化技术,以大豆油为油相、葡萄糖为固化剂,制备均一载硫酸亚铁明胶微球,考察了制备参数对明胶微球形貌和均一性的影响. 结果表明,优化的制备参数为明胶溶液浓度0.200 g/mL、乳化剂浓度0.07 g/mL、初乳均质转速10000 r/min、固化反应时间20 min. 在该条件下制备了球形圆整、平均粒径为50 μm的均一载FeSO4明胶微球,FeSO4包埋率达44.12%,Fe2+含量为60.8%.  相似文献   

18.
以壳聚糖(CS)和海藻酸钠(ALG)为包封材料,以阿维菌素(AVM)为芯材,采用锐孔法制备了阿维菌素-海藻酸钠-壳聚糖微球,考察了海藻酸钠质量分数、壳聚糖质量分数、氯化钙质量分数和芯壁体积比(质量分数1%的阿维菌素乳液与质量分数3%海藻酸钠溶液的体积比)对微球形态及包埋率的影响,利用SEM、FTIR等对微球结构及性质进行了表征,并考察了其在土壤中的缓释性能和释药机制。结果表明,经优化的制备条件为:海藻酸钠、壳聚糖及氯化钙的质量分数分别为3%、0.6%及5%,芯壁体积比为1∶2,制备的载药微球形状规整,成球性良好,粒径约0.7 mm,载药量31.65%,包埋率83.81%;红外光谱分析显示,芯壁材料之间除氢键外,没有发生化学作用。所制备的阿维菌素微球在土壤中具有缓释特性,42 h累积释药率达到82.06%,之后药物释放减缓。药物释放特性符合Riger-Peppas模型,释放机理为Fick扩散。  相似文献   

19.
以明胶和壳聚糖为主要原料,戊二醛为交联剂,采用反相乳化法制备载钾离子半互穿聚合物网络结构微球。考察了不同因素对微球中K_2O质量分数包封率的影响,确定了优化工艺条件。且在此优化条件下制备的微球K_2O的质量分数以及包封率分别为20.96%、28.13%。借助于傅里叶红外(FT-IR)、X-射线衍射(XRD)技术对微球进行了性能和结构表征。结果表明,明胶与壳聚糖之间形成互穿网络结构,K~+成功负载在微球中。通过缓释性测试发现,改变CS和交联剂用量可以调控K~+释放速率,且通过经验方程对数据进行拟合分析表明,微球中K~+释放符合菲克扩散模型,具有潜在缓释钾肥应用价值。  相似文献   

20.
[目的]优化多杀霉素/壳聚糖微球的制备条件,并初步探究其在不同温度下的释药行为。[方法]采用均相沉淀法制备多杀霉素/壳聚糖微球。通过测定微球在不同温度下的溶胀度和累积释药率,研究其药物释放温敏性。[结果]微球适宜制备条件:壳聚糖水溶液1%,多杀霉素甲醇溶液1.5%,壳聚糖与多杀霉素的质量比2∶1,乳化剂吐温80 5%,15 000 r/min下剪切3 min,沉淀剂为3%的氨水和异丙醇的混合液(体积比4∶1),加入量为壳聚糖溶液与多杀霉素甲醇溶液总体积的60%。微球包封率大于90%,载药量大于30%,中粒径D_(50)为40μm左右。在pH值6.86的缓冲溶液中,微球的溶胀度、释药速率和累积释药率均随着温度的升高而升高,表现出明显的温度敏感性。[结论]多杀霉素/壳聚糖微球有望开发为温度响应型环境友好控释制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号