首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The problem of determining whether a polytope P of n ×n matrices is D-stable-i.e. whether each point in P has all its eigenvalues in a given nonempty, open, convex, conjugate-symmetric subset D of the complex plane-is discussed. An approach which checks the D-stability of certain faces of P is used. In particular, for each D and n the smallest integer m such that D-stability of every m-dimensional face guarantees D-stability of P is determined. It is shown that, without further information describing the particular structure of a polytope, either (2n-4)-dimensional or (2n-2)-dimensional faces need to be checked for D-stability, depending on the structure of D. Thus more work needs to be done before a computationally tractable algorithm for checking D-stability can be devised  相似文献   

2.
A hypercube algorithm to solve the list ranking problem is presented. Let n be the length of the list, and let p be the number of processors of the hypercube. The algorithm described runs in time O(n/p) when n=Ω(p 1+ε) for any constant ε>0, and in time O(n log n/p+log3 p) otherwise. This clearly attains a linear speedup when n=Ω(p 1+ε). Efficient balancing and routing schemes had to be used to achieve the linear speedup. The authors use these techniques to obtain efficient hypercube algorithms for many basic graph problems such as tree expression evaluation, connected and biconnected components, ear decomposition, and st-numbering. These problems are also addressed in the restricted model of one-port communication  相似文献   

3.
In an n-dimensional hypercube Qn, with the fault set |F|<2n-2, assuming S and D are not isolated, it is shown that there exists a path of length equal to at most their Hamming distance plus 4. An algorithm with complexity O (|F|logn) is given to find such a path. A bound for the diameter of the faulty hypercube Qn-F, when |F|<2n-2, as n+2 is obtained. This improves the previously known bound of n+6 obtained by A.-H. Esfahanian (1989). Worst case scenarios are constructed to show that these bounds for shortest paths and diameter are tight. It is also shown that when |F|<2n-2, the diameter bound is reduced to n+1 if every node has at least 2 nonfaulty neighbors and reduced to n if every node has at least 3 nonfaulty neighbors  相似文献   

4.
In the above-titled paper (ibid., vol.12, no.11, p.1088-92, Nov. 1990), parallel implementations of hierarchical clustering algorithms that achieve O(n2) computational time complexity and thereby improve on the baseline of sequential implementations are described. The latter are stated to be O( n3), with the exception of the single-link method. The commenter points out that state-of-the-art hierarchical clustering algorithms have O(n2) time complexity and should be referred to in preference to the O(n3 ) algorithms, which were described in many texts in the 1970s. Some further references in the parallelizing of hierarchic clustering algorithms are provided  相似文献   

5.
Let ξ be a random variable over a finite set with an arbitrary probability distribution. Improvements to a fast method of generating sample values for ξ in constant time are suggested. The proposed modification reduces the time required for initialization to O( n). For a simple genetic algorithm, this improvement changes an O(g n 1n n) algorithm into an O(g n) algorithm (where g is the number of generations, and n is the population size)  相似文献   

6.
A unified analytical model for computing the task-based dependability (TDB) of hypercube architectures is presented. A hypercube is deemed operational as long as a task can be executed on the system. The technique can compute both reliability and availability for two types of task requirements-I-connected model and subcube model. The I-connected TBD assumes that a connected group of at least I working nodes is required for task execution. The subcube TBD needs at least an m-cube in an n-cube, mn, for task execution. The dependability is computed by multiplying the probability that x nodes (xI or x⩾2m) are working in an n-cube at time t by the conditional probability that the hypercube can satisfy any one of the two task requirements from x working nodes. Recursive models are proposed for the two types of task requirements to find the connection probability. The subcube requirement is extended to find multiple subcubes for analyzing multitask dependability. The analytical results are validated through extensive simulation  相似文献   

7.
The implementations of the Viterbi algorithm (VA) and the interacting multiple model (IMM) algorithm on a shared-bus and shared-memory multiple-input multiple-data (MIMD) multiprocessor are discussed. The computational complexity as well as the speedup and efficiency are examined in detail. It is shown that the computational complexity of the parallel implementation of these algorithms is about the same in both memory space and processing time categories. Efficiency with P processors is about 1-1/P for small P and is expected to be relatively high for large P, especially when many filters and large state and measurement vectors are considered  相似文献   

8.
A novel discrete relaxation architecture   总被引:1,自引:0,他引:1  
The discrete relaxation algorithm (DRA) is a computational technique that enforces arc consistency (AC) in a constraint satisfaction problem (CSP). The original sequential AC-1 algorithm suffers from O(n3m3) time complexity, and even the optimal sequential AC-4 algorithm is O (n2m2) for an n-object and m-label DRA problem. Sample problem runs show that these algorithms are all too slow to meet the need for any useful, real-time CSP applications. A parallel DRA5 algorithm that reaches a lower bound of O(nm) (where the number of processors is polynomial in the problem size) is given. A fine-grained, massively parallel hardware computer architecture has been designed for the DRA5 algorithm. For practical problems, many orders of magnitude of efficiency improvement can be reached on such a hardware architecture  相似文献   

9.
An O(n2) time serial algorithm is developed for obtaining the medial axis transform (MAT) of an n×n image. An O(log n) time CREW PRAM algorithm and an O(log2 n) time SIMD hypercube parallel algorithm for the MAT are also developed. Both of these use O(n2) processors. Two problems associated with the MAT, the area and perimeter reporting problem, are studied. An O(log n) time hypercube algorithm is developed for both of them, where n is the number of squares in the MAT, and the algorithms use O(n2) processors  相似文献   

10.
The problem of distributed leader election in an asynchronous complete network, in the presence of faults that occurred prior to the execution of the election algorithm, is discussed. Failures of this type are encountered, for example, during a recovery from a crash in the network. For a network with n processors, k of which start the algorithm that uses at most O(n log k +n+kt) messages is presented and shown to be optimal. An optimal algorithm for the case where the identities of the neighbors are known is also presented. It is noted that the order of the message complexity of a t-resilient algorithm is not always higher than that of a nonresilient one. The t-resilient algorithm is a systematic modification of an existing algorithm for a fault-free network  相似文献   

11.
The transitive closure problem in O(1) time is solved by a new method that is far different from the conventional solution method. On processor arrays with reconfigurable bus systems, two O (1) time algorithms are proposed for computing the transitive closure of an undirected graph. One is designed on a three-dimensional n×n×n processor array with a reconfigurable bus system, and the other is designed on a two-dimensional n2×n2 processor array with a reconfigurable bus system, where n is the number of vertices in the graph. Using the O(1) time transitive closure algorithms, many other graph problems are solved in O(1) time. These problems include recognizing bipartite graphs and finding connected components, articulation points, biconnected components, bridges, and minimum spanning trees in undirected graphs  相似文献   

12.
A distributed knot detection algorithm for general graphs is presented. The knot detection algorithm uses at most O(n log n+m) messages and O(m+n log n) bits of memory to detect all knots' nodes in the network (where n is the number of nodes and m is the number of links). This is compared to O(n2) messages needed in the best algorithm previously published. The knot detection algorithm makes use of efficient cycle detection and clustering techniques. Various applications for the knot detection algorithms are presented. In particular, its importance to deadlock detection in store and forward communication networks and in transaction systems is demonstrated  相似文献   

13.
An algorithm for convolving a k×k window of weighting coefficients with an n×n image matrix on a pyramid computer of O(n2) processors in time O(logn+k2), excluding the time to load the image matrix, is presented. If k=Ω (√log n), which is typical in practice, the algorithm has a processor-time product O(n 2 k2) which is optimal with respect to the usual sequential algorithm. A feature of the algorithm is that the mechanism for controlling the transmission and distribution of data in each processor is finite state, independent of the values of n and k. Thus, for convolving two {0, 1}-valued matrices using Boolean operations rather than the typical sum and product operations, the processors of the pyramid computer are finite-state  相似文献   

14.
A new parallel algorithm is proposed for fat image labeling using local operators on image pixels. The algorithm can be implemented on an n×n mesh-connected computer such that, for any integer k in the range [1, log (2n)], the algorithm requires Θ(kn1k/) bits of local memory per processor and takes Θ(kn) time. Bit-serial processors and communication links can be used without affecting the asymptotic time complexity of the algorithm. The time complexity of the algorithm has very small leading constant factors, which makes it superior to previous mesh computer labeling algorithms for most practical image sizes (e.g. up to 4096×4096 images). Furthermore, the algorithm is based on using stacks that can be realized using very fast shift registers within each processing element  相似文献   

15.
It is shown that there is a continuously parameterized family F of n-dimensional single-input single-output (SISO) stabilizable detectable linear system Σ(p) which contains at least one realization of each reduced, strictly proper transfer function of McMillan degree not exceeding n. The parameterization map p→Σ(p) is a polynomial function in 2n indeterminates from an open convex polyhedron in R2n to the linear space of all SISO n-dimensional linear systems  相似文献   

16.
A parallel sorting algorithm for sorting n elements evenly distributed over 2d p nodes of a d-dimensional hypercube is presented. The average running time of the algorithm is O((n log n)/p+p log 2n). The algorithm maintains a perfect load balance in the nodes by determining the (kn/p)th elements (k1,. . ., (p-1)) of the final sorted list in advance. These p-1 keys are used to partition the sorted sublists in each node to redistribute data to the nodes to be merged in parallel. The nodes finish the sort with an equal number of elements (n/ p) regardless of the data distribution. A parallel selection algorithm for determining the balanced partition keys in O(p log2n) time is presented. The speed of the sorting algorithm is further enhanced by the distance-d communication capability of the iPSC/2 hypercube computer and a novel conflict-free routing algorithm. Experimental results on a 16-node hypercube computer show that the sorting algorithm is competitive with the previous algorithms and faster for skewed data distributions  相似文献   

17.
An estimator for estimating the parameters of a Markov random field X from inaccurate observations is introduced. The author considers first a Markov (Gibbs) random field X={Xi,j} on a lattice L={(i ,j): i=1,2,. . .,n; j=1,2,. . .,m}. The marginal distributions of (Xi,j, Xi+u,j+v) (u,v=-1,0,1) are first estimated from an image. Then, random fields X* are simulated with the probability of X*i+u,j+v)=b nearly equal to the estimate of P{Xi,j=X i+u,=b}. A simulation method similar to the Gibbs sampler is used. The parameters of the Markov random field model are estimated from the X*'s with the pseudolikelihood method  相似文献   

18.
The authors investigate the computing capabilities of formal McCulloch-Pitts neurons when errors are permitted in decisions. They assume that m decisions are to be made on a randomly specified m set of points in n space and that an error tolerance of ϵm decision errors is allowed, with 0⩽ϵ<1/2. The authors are interested in how large an m can be selected such that the neuron makes reliable decisions within the prescribed error tolerance. Formal results for two protocols for error-tolerance-a random error protocol and an exhaustive error protocol-are obtained. The results demonstrate that a formal neuron has a computational capacity that is linear in n and that this rate of capacity growth persists even when errors are tolerated in the decisions  相似文献   

19.
In a general algebraic framework, starting with a bicoprime factorization P=NprD-1 Npl, a right-coprime factorization Np Dp-1, a left-coprime factorization D-1pNp, and the generalized Bezout identities associated with the pairs (Np, Dp) and (D˜ p, N˜p) are obtained. The set of all H-stabilizing compensators for P in the unity-feedback configuration S(P, C) are expressed in terms of (Npr, D, N pt) and the elements of the Bezout identity. The state-space representation P=C(sI-A)-1B is included as an example  相似文献   

20.
Structural controllability of time-invariant and time-varying systems when the input control sequences have a restricted length k is compared. The dimensions of controllable space coincide in the following three special cases: the input sequences have length k=2; the input sequences have k=n, where n is the size of the system (i.e., the ultimate controllability is the same in both cases); and for every length of input sequences provided that the system has a single input only. It is proved that there may appear a gap for every input length k such that 2< kn/2. The case when n/2<k<n is left open  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号