首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cu/SnAg double-bump structure is a promising candidate for fine-pitch flip-chip applications. In this study, the interfacial reactions of Cu (60 μm)/SnAg (20 μm) double-bump flip chip assemblies with a 100 μm pitch were investigated. Two types of thermal treatments, multiple reflows and thermal aging, were performed to evaluate the thermal reliability of Cu/SnAg flip-chip assemblies on organic printed circuit boards (PCBs). After these thermal treatments, the resulting intermetallic compounds (IMCs) were identified with scanning electron microscopy (SEM), and the contact resistance was measured using a daisy-chain and a four-point Kelvin structure. Several types of intermetallic compounds form at the Cu column/SnAg solder interface and the SnAg solder/Ni pad interface. In the case of flip-chip samples reflowed at 250°C and 280°C, Cu6Sn5 and (Cu, Ni)6Sn5 IMCs were found at the Cu/SnAg and SnAg/Ni interfaces, respectively. In addition, an abnormal Ag3Sn phase was detected inside the SnAg solder. However, no changes were found in the electrical contact resistance in spite of severe IMC formation in the SnAg solder after five reflows. In thermally aged flip-chip samples, Cu6Sn5 and Cu3Sn IMCs were found at the Cu/SnAg interface, and (Cu, Ni)6Sn5 IMCs were found at the SnAg/Ni interface. However, Ag3Sn IMCs were not observed, even for longer aging times and higher temperatures. The growth of Cu3Sn IMCs at the Cu/SnAg interface was found to lead to the formation of Kirkendall voids inside the Cu3Sn IMCs and linked voids within the Cu3Sn/Cu column interfaces. These voids became more evident when the aging time and temperature increased. The contact resistance was found to be nearly unchanged after 2000 h at 125°C, but increases slightly at 150°C, and a number of Cu/SnAg joints failed after 2000 h. This failure was caused by a reduction in the contact area due to the formation of Kirkendall and linked voids at the Cu column/Cu3Sn IMC interface.  相似文献   

2.
The growth behavior of interfacial intermetallic compounds (IMCs) of SnAgCu/Cu soldered joints was investigated during the reflow process, isothermal aging, and thermal cycling with a focus on the influence of these parameters on growth kinetics. The SnAgCu/Cu soldered joints were isothermally aged at 125°C, 150°C, and 175°C while the thermal cycling was performed within the temperature ranges from −25°C to 125°C and −40°C to 125°C. It was observed that a Cu6Sn5 layer formed, followed by rapid coarsening at the solder/Cu interface during reflowing. The grain size of the interfacial Cu6Sn5 was found to increase with aging time, and the morphology evolved from scallop-like to needle-like to rod-like and finally to particles. The rod-like Ag3Sn phase was formed on the solder side in front of the previously formed Cu6Sn5 layer. However, when subject to an increase of the aging time, the Cu3Sn phase was formed at the interface of the Cu6Sn5 layer and Cu substrate. The IMC growth rate increased with aging temperature for isothermally aged joints. During thermal cycling, the thickness of the IMC layer was found to increase with the number of thermal cycles, although the growth rate was slower than that for isothermal aging. The dwell time at the high-temperature end of the thermal cycles was found to significantly influence the growth rate of the IMCs. The growth of the IMCs, for both isothermal aging and thermal cycling, was found to be Arrhenius with aging temperature, and the corresponding diffusion factor and activation energy were obtained by data fitting. The tensile strength of the soldered joints decreased with increasing aging time. Consequently, the fracture site of the soldered joints migrated from the solder matrix to the interfacial Cu6Sn5 layer. Finally, the shear strength of the joints was found to decrease with both an increase in the number of thermal cycles and a decrease in the dwell temperature at the low end of the thermal cycle.  相似文献   

3.
The in situ intermetallic compound (IMC) growth in Cu pillar/Sn bumps was investigated by isothermal annealing at 120°C, 150°C, and 180°C using an in situ scanning electron microscope. Only the Cu6Sn5 phase formed at the interface between the Cu pillar and Sn during the reflow process. The Cu3Sn phase formed and grew at the interfaces between the Cu pillar and Cu6Sn5 with increased annealing time. Total (Cu6Sn5 + Cu3Sn) IMC thickness increased linearly with the square root of annealing time. The growth slopes of total IMC decreased after 240 h at 150°C and 60 h at 180°C, due to the fact that the Cu6Sn5 phase transforms to the Cu3Sn phase when all of the remaining Sn phase in the Cu pillar bump is completely exhausted. The complete consumption time of the Sn phase at 180°C was shorter than that at 150°C. The apparent activation energy for total IMC growth was determined to be 0.57 eV.  相似文献   

4.
The interfacial interaction between Cu substrates and Sn-3.5Ag-0.7Cu-xSb (x = 0, 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0) solder alloys has been investigated under different isothermal aging temperatures of 100°C, 150°C, and 190°C. Scanning electron microscopy (SEM) was used to measure the thickness of the intermetallic compound (IMC) layer and observe the microstructural evolution of the solder joints. The IMC phases were identified by energy-dispersive x-ray spectroscopy (EDX) and x-ray diffractometry (XRD). The growth of both the Cu6Sn5 and Cu3Sn IMC layers at the interface between the Cu substrate and the solder fits a power-law relationship with the exponent ranging from 0.42 to 0.83, which suggests that the IMC growth is primarily controlled by diffusion but may also be influenced by interface reactions. The activation energies and interdiffusion coefficients of the IMC formation of seven solder alloys were determined. The addition of Sb has a strong influence on the growth of the Cu6Sn5 layer, but very little influence on the formation of the Cu3Sn IMC phase. The thickness of the Cu3Sn layer rapidly increases with aging time and temperature, whereas the thickness of the Cu6Sn5 layer increases slowly. This is probably due to the formation of Cu3Sn at the interface between two IMC phases, which occurs with consumption of Cu6Sn5. Adding antimony to Sn-3.5Ag-0.7Cu solder can evidently increase the activation energy of Cu6Sn5 IMC formation, reduce the atomic diffusion rate, and thus inhibit excessive growth of Cu6Sn5 IMCs. This study suggests that grain boundary pinning is one of the most important mechanisms for inhibiting the growth of Cu6Sn5 IMCs in such solder joints when Sb is added.  相似文献   

5.
Zn additions to Cu under bump metallurgy (UBM) in solder joints were the subject of this study. An alternative design was implemented to fabricate pure Sn as the solder and Cu-xZn (x = 15 wt.% and 30 wt.%) as the UBM to form the reaction couple. As the Zn content increased from 15 wt.% to 30 wt.% in the Sn/Cu-Zn system, growth of both Cu3Sn and Cu6Sn5 was suppressed. In addition, no Kirkendall voids were observed at the interface in either Sn/Cu-Zn couple during heat treatment. After 40-day aging, different multilayered phases of [Cu6Sn5/Cu3Sn/Cu(Zn)] and [Cu6Sn5/Cu(Zn,Sn)/CuZn] formed at the interface of [Sn/Cu-15Zn] and [Sn/Cu-30Zn] couples, respectively. The growth mechanism of intermetallic compounds (IMCs) during aging is discussed on the basis of the composition variation in the joint assembly with the aid of electron-microscopic characterization and the Sn-Cu-Zn ternary phase diagram. According to these analyses of interfacial morphology and IMC formation in the Sn/Cu-Zn system, Cu-Zn is a potential UBM for retarding Cu pad consumption in solder joints.  相似文献   

6.
Thermal annealing and electromigration (EM) tests were performed with Cu pillar/Sn bumps to understand the growth mechanism of intermetallic compounds (IMCs). Annealing tests were carried out at both 100°C and 150°C. At 150°C, EM tests were performed using a current density of 3.5 × 104 A/cm2. The electrical failure mechanism of the Cu pillar/Sn bumps was also investigated. Cu3Sn formed and grew at the Cu pillar/Cu6Sn5 interface with increasing annealing and current-stressing times. The growth mechanism of the total (Cu6Sn5 + Cu3Sn) IMC changed when the Sn phase in the Cu pillar/Sn bump was exhausted. The time required for complete consumption of the Sn phase was shorter during the EM test than in the annealing test. Both IMC growth and phase transition from Cu6Sn5 to Cu3Sn had little impact on the electrical resistance of the whole interconnect system during current stressing. Electrical open failure in the Al interconnect near the chip-side Cu pillar edge implies that the Cu pillar/Sn bump has excellent electrical reliability compared with the conventional solder bump.  相似文献   

7.
Chip to chip bonding techniques using Cu bumps capped with thin solder layers have been frequently applied to 3D chip stacking technology. We studied the effect of joint microstructure on shear strength. Joints were formed by joining Sn/Cu bumps on a Si die and Sn/Cu layers on another Si die at 245–330°C using a thermo-compression bonder. Three different types of microstructures were fabricated in the joints by controlling the bonding temperature and time, (1) a Sn-rich phase with a Cu6Sn5 phase at the Cu interfaces, (2) a Cu6Sn5 phase in the interior with a Cu3Sn phase at the Cu interfaces, and (3) one single Cu3Sn phase throughout the whole joint. The joint having a single Cu3Sn phase had the highest shear strength. Specimens were aged up to 2000 h at 150°C and 180°C. During aging, the microstructures of all joints were transformed in a single Cu3Sn phase. The shear strength of the joints was very sensitive to the formation of Cu3Sn and microvoids. Microvoids formed in the solder joints with a Cu6Sn5 phase with and without a Sn-rich phase during aging and decreased the shear strength of the joints. Conversely, aging did not induce the formation of microvoids in the joints which originally had only a Cu3Sn phase and the shear strength was not decreased.  相似文献   

8.
Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.  相似文献   

9.
The microstructure of the eutectic SnBi/Cu interface was investigated by transmission electron microscopy to study the growth mechanisms of the intermetallic compounds (IMCs). Although the growth kinetics of the total IMC layer were similar, the individual Cu3Sn layer grew faster on polycrystalline Cu than on single-crystal substrates. It was found that, on polycrystalline Cu, newly formed Cu3Sn grains with a smaller grain size nucleated and grew at both the Cu/Cu3Sn and Cu3Sn/Cu6Sn5 interfaces during reflow and solid-state aging. The consumption of Cu6Sn5 to form Cu3Sn was faster at the Cu3Sn/Cu6Sn5 interface. While on single-crystal Cu new Cu3Sn grains nucleated only at the Cu/Cu3Sn interface, the directional growth of the initial columnar Cu3Sn controlled the advance of the Cu3Sn/Cu6Sn5 interface.  相似文献   

10.
Solder interconnect reliability is influenced by environmentally imposed loads, solder material properties, and the intermetallics formed within the solder and the metal surfaces to which the solder is bonded. Several lead-free metallurgies are being used for component terminal plating, board pad plating, and solder materials. These metallurgies react together and form intermetallic compounds (IMCs) that affect the metallurgical bond strength and the reliability of solder joint connections. This study evaluates the composition and extent of intermetallic growth in solder joints of ball grid array components for several printed circuit board pad finishes and solder materials. Intermetallic growth during solid state aging at 100°C and 125°C up to 1000 h for two solder alloys, Sn-3.5Ag and Sn-3.0Ag-0.5Cu, was investigated. For Sn-3.5Ag solder, the electroless nickel immersion gold (ENIG) pad finish was found to result in the lowest IMC thickness compared to immersion tin (ImSn), immersion silver (ImAg), and organic solderability preservative (OSP). Due to the brittle nature of the IMC, a lower IMC thickness is generally preferred for optimal solder joint reliability. A lower IMC thickness may make ENIG a desirable finish for long-life applications. Activation energies of IMC growth in solid-state aging were found to be 0.54 ± 0.1 eV for ENIG, 0.91 ± 0.12 eV for ImSn, and 1.03 ± 0.1 eV for ImAg. Cu3Sn and Cu6Sn5 IMCs were found between the solder and the copper pad on boards with the ImSn and ImAg pad finishes. Ternary (Cu,Ni)6Sn5 intermetallics were found for the ENIG pad finish on the board side. On the component side, a ternary IMC layer composed of Ni-Cu-Sn was found. Along with intermetallics, microvoids were observed at the interface between the copper pad and solder, which presents some concern if devices are subject to shock and vibration loading.  相似文献   

11.
Cu6Sn5 and Cu3Sn are common intermetallic compounds (IMCs) found in Sn–Ag–Cu (SAC) lead-free solder joints with OSP pad finish. People typically attributed the brittle failure to excessive growth of IMCs at the interface between the solder joint and the copper pad. However, the respective role of Cu6Sn5 and Cu3Sn played in the interfacial fracture still remains unclear. In the present study, various amounts of Ni were doped in the Sn–Cu based solder. The different effects of Ni concentration on the growth rate of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn were characterized and compared. The results of characterization were used to evaluate different growth rates of (Cu, Ni)6Sn5 and Cu3Sn under thermal aging. The thicknesses of (Cu, Ni)6Sn5/Cu6Sn5 and Cu3Sn after different thermal aging periods were measured. High speed ball pull/shear tests were also performed. The correlation between interfacial fracture strength and IMC layer thicknesses was established.  相似文献   

12.
A comparative study of solid/solid interfacial reactions of electroless Ni-P (15 at.% P) with lead-free solders, Sn-0.7Cu, Sn-3.5Ag, Sn-3.8Ag-0.7Cu, and pure Sn, was carried out by performing thermal aging at 150°C up to 1000 h. For pure Sn and Sn-3.5Ag solder, three distinctive layers, Ni3Sn4, SnNiP, and Ni3P, were observed in between the solder and electroless Ni-P; while for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders, two distinctive layers, (CuNi)6Sn5 and Ni3P, were observed. The differences in morphology and growth kinetics of the intermetallic compounds (IMCs) at the interfaces between electroless Ni-P and lead-free solders were investigated, as well as the growth kinetics of the P-enriched layers underneath the interfacial IMC layers. With increasing aging time, the coarsening of interfacial Ni3Sn4 IMC grains for pure Sn and Sn-3.5Ag solder was significantly greater than that of the interfacial (CuNi)6Sn5 IMC grains for Sn-0.7Cu and Sn-3.8Ag-0.7Cu solders. Furthermore, the Ni content in interfacial (CuNi)6Sn5 phase slightly increased during aging. A small addition of Cu (0.7 wt.%) resulted in differences in the type, morphology, and growth kinetics of interfacial IMCs. By comparing the metallurgical aspects and growth kinetics of the interfacial IMCs and the underneath P-enriched layers, the role of initial Cu and Ag in lead-free solders is better understood.  相似文献   

13.
A detailed experimental study on the fracture mechanism of Cu–Sn intermetallic compounds (IMCs) in the Pb-free solder was presented in this paper. The growth behaviors of the Cu6Sn5 and Cu3Sn IMCs were inspected and the respective evolution pattern of their microstructures was investigated. Then, a detailed fractographic analysis on brittle fractured solder joints was conducted after the high speed ball pull test. The fracture locations in the Cu–Sn IMC layers during different periods of aging process were identified. The fracture modes of Cu6Sn5 and Cu3Sn were determined as well. Afterwards, the fracture energies of different Cu–Sn IMC materials were directly compared using the Charpy impact test with a specially designed specimen. It was found that the grain boundary of Cu3Sn is the weakest link in the Cu–Sn IMC system. Finally, based on these three parts of study, a mechanism to explain the thermal degradation of Cu–Sn IMCs was proposed.  相似文献   

14.
This study investigates the interfacial reactions between Sn-3.0wt.% Ag-0.5wt.%Cu (SAC) and Sn-0.7wt.%Cu (SC) on In/Ni/Cu multilayer substrates using the solid–liquid interdiffusion bonding technique. Samples were reflowed first at 160°C, 180°C, and 200°C for various periods, and then aged at 100°C for 100 h to 500 h. The scalloped Cu6Sn5 phase was formed at the SAC/In/Ni/Cu and SC/In/Ni/Cu interfaces. When the reflowing temperatures were 160°C and 180°C, a ternary Ni-In-Sn intermetallic compound (IMC) was formed when the samples were further aged at 100°C. This ternary Ni-In-Sn IMC could be the binary Ni3Sn4 phase with extensive Cu and In solubilities, or the ternary Sn-In-Ni compound with Cu solubility, or even a quaternary compound. As the reflow temperature was increased to 200°C, only one Cu6Sn5 phase was formed at the solder/substrate interface with the heat treatment at 100°C for 500 h. Mechanical test results indicated that the formation of the Ni-In-Sn ternary IMC weakened the mechanical strength of the solder joints. Furthermore, the solid–liquid interdiffusion (SLID) technique in this work effectively reduced the reflow temperature.  相似文献   

15.
Cu6Sn5 and Cu3Sn are easily formed at the interface between Sn and Cu during reflow and aging processes. Thick Cu-Sn compounds at the interface become brittle, reducing the mechanical strength of solder joints and increasing the consumption of under bump metallization (UBM). It is noted that intermetallic compound (IMC) growth and substrate consumption are affected by factors such as substrate fabrication, substrate orientation, and substrate microstructure. In this study, to determine the effects of substrate grain size on IMC growth and substrate consumption, pure Sn solder was reflowed on annealed Cu substrates with different grain sizes at 250°C for 30 s to 600 s. It was revealed that Cu substrates with smaller grain sizes exhibited reduced IMC growth. In addition, the interdiffusion coefficients of Cu6Sn5 and Cu3Sn were decreased for the Cu substrate with the smaller grain size. The influence of the Cu substrate grain size on IMC growth and substrate consumption is discussed.  相似文献   

16.
Even though electroless Ni-P and Sn-Ag-Cu solders are widely used materials in flip-chip bumping technologies, interfacial reactions of the ternary Cu-Ni-Sn system are not well understood. The growth of intermetallic compounds (IMCs) at the under bump metallization (UBM)/solder interface can affect solder-joint reliability, so analysis of IMC phases and understanding their growth kinetics are important. In this study, interfacial reactions between electroless Ni-P UBM and the 95.5Sn-4.0Ag-0.5Cu alloy were investigated, focusing on identification of IMC phases and IMC growth kinetics at various reflowing and aging temperatures and times. The stable ternary IMC initially formed at the interface after reflowing was the (Cu,Ni)6Sn5 phase. However, during aging, the (Cu,Ni)6Sn5 phase slowly changed into the quaternary IMC composed of Cu, Ni, Sn, and a small amount of Au. The Au atoms in the quaternary IMC originated from immersion Au plated on electroless Ni-P UBM. During further reflowing or aging, the (Ni,Cu)3Sn4 IMC started forming because of the limited Cu content in the solder. Morphology, composition, and crystal structure of each IMC were identified using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Small amounts of Cu in the solder affect the types of IMC phases and the amount of the IMC. The activation energies of (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 IMCs were used to estimate the growth kinetics of IMCs. The growth of IMCs formed in aging was very slow and temperature-dependent compared to IMCs formed in reflow because of the higher activation energies of IMCs in aging. Comparing activation energies of each IMC, growth mechanism of IMCs at electroless Ni-P/SnAgCu solder interface will be discussed.  相似文献   

17.
The effects of surface finishes on the in situ interfacial reaction characteristics of ball grid array (BGA) Sn-3.0Ag-0.5Cu lead-free solder bumps were investigated under annealing and electromigration (EM) test conditions of 130°C to 175°C with 5.0 × 103 A/cm2. During reflow and annealing, (Cu,Ni)6Sn5 intermetallic compound (IMC) formed at the interface of electroless nickel immersion gold (ENIG) finish. In the case of both immersion Sn and organic solderability preservative (OSP) finishes, Cu6Sn5 and Cu3Sn IMCs formed. Overall, the IMC growth velocity of ENIG was much lower than that of the other finishes. The activation energies of total IMCs were found to be 0.52 eV for ENIG, 0.78 eV for immersion Sn, and 0.72 eV for OSP. The ENIG finish appeared to present an effective diffusion barrier between the Cu substrate and the solder, which leads to better EM reliability in comparison with Cu-based pad systems. The failure mechanisms were explored in detail via in situ EM tests.  相似文献   

18.
The effect of electromigration (EM) on the interfacial reaction in a line-type Cu/Sn/Ni-P/Al/Ni-P/Sn/Cu interconnect was investigated at 150°C under 5.0 × 103 A/cm2. When Cu atoms were under downwind diffusion, EM enhanced the cross-solder diffusion of Cu atoms to the opposite Ni-P/Sn (anode) interface compared with the aging case, resulting in the transformation of interfacial intermetallic compound (IMC) from Ni3Sn4 into (Cu,Ni)6Sn5. However, at the Sn/Cu (cathode) interface, the interfacial IMCs remained as Cu6Sn5 (containing less than 0.2 wt.% Ni) and Cu3Sn. When Ni atoms were under downwind diffusion, only a very small quantity of Ni atoms diffused to the opposite Cu/Sn (anode) interface and the interfacial IMCs remained as Cu6Sn5 (containing less than 0.6 wt.% Ni) and Cu3Sn. EM significantly accelerated the dissolution of Ni atoms from the Ni-P and the interfacial Ni3Sn4 compared with the aging case, resulting in fast growth of Ni3P and Ni2SnP, disappearance of interfacial Ni3Sn4, and congregation of large (Ni,Cu)3Sn4 particles in the Sn solder matrix. The growth kinetics of Ni3P and Ni2SnP were significantly accelerated after the interfacial Ni3Sn4 IMC completely dissolved into the solder, but still followed the t 1/2 law.  相似文献   

19.
In this work, the impact of microvoids on the microstructural evolution of η-Cu6Sn5 and ?-Cu3Sn in the Cu-Sn system is evaluated numerically. Through the use of the multiphase-field method, the systems of interest are allowed to evolve using a solid-state aging temperature of 453 K in conjunction with material parameters and reaction conditions adopted from previous research. The simulation results are then analyzed and compared with previous experiments in terms of the morphological evolution of the intermetallic compounds (IMCs), the IMC layer thicknesses, and the corresponding interfacial roughness. It is shown that the presence of microvoids at the ?/Cu interface interferes with the flow of mass throughout the phases, impeding phase transformations and grain coarsening. This ultimately affects the IMC coarsening rate and overall IMC layer thicknesses. Additionally, it was observed that the presence of microvoids at the ?/Cu interface affects the formation of both IMC layers and their corresponding interfaces, and the changes in roughness for the interfaces are quantitatively provided. Overall, the simulations are found to be within the range of accepted experimental values for the morphology of the IMC grains, the evolution of IMC layer thicknesses, and the evolution of interface roughness.  相似文献   

20.
Growth kinetics of intermetallic compound (IMC) layers formed between the Sn-3.5Ag-5Bi solder and the Cu and electroless Ni-P substrates were investigated at temperatures ranging from 70°C to 200°C for 0–60 days. With the solder joints between the Sn-Ag-Bi solder and Cu substrates, the IMC layer consisted of two phases: the Cu6Sn5 (η phase) adjacent to the solder and the Cu3Sn (ε phase) adjacent to the Cu substrate. In the case of the electroless Ni-P substrate, the IMC formed at the interface was mainly Ni3Sn4, and a P-rich Ni (Ni3P) layer was also observed as a by-product of the Ni-Sn reaction, which was between the Ni3Sn4 IMC and the electroless Ni-P deposit layer. With all the intermetallic layers, time exponent (n) was approximately 0.5, suggesting a diffusion-controlled mechanism over the temperature range studied. The interface between electroless Ni-P and Ni3P was planar, and the time exponent for the Ni3P layer growth was also 0.5. The Ni3P layer thickness reached about 2.5 μm after 60 days of aging at 170°C. The activation energies for the growth of the total Cu-Sn compound layer (Cu6Sn5 + Cu3Sn) and the Ni3Sn4 IMC were 88.6 kJ/mol and 52.85 kJ/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号