首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
对工农业废弃物进行再利用对于保护环境和节约资源具有重要意义。本文在鼓泡流化床上进行了稻草与污泥共气化试验,分别分析了气化当量比、原料含水率和污泥掺混比对气化特性和焦油产量的影响。结果表明:当量比从0.2增加至0.4的过程中,产气中的可燃组分浓度、产气热值和气化效率均呈现先略有增大后逐渐减小的趋势,气化效率在当量比为0.25左右最大达到53.8%;在整个过程中,气化焦油产量随着当量比的增大而逐渐减小。原料含水率的增大对于气化具有削弱作用,随着含水率从5%增大到20%,产气中的可燃组分浓度均逐渐减小,产气热值、气体产率和气化效率在含水率为20%时均达到最低;焦油产量先增大后有所减小。在污泥掺混比从0增至30%过程中,H2的浓度基本不变,CH4和CO的浓度先增加后减小,产气热值和气化效率在掺混比为20%时均达到最好;焦油产量随污泥掺混比增加先逐渐减小后略微增大。  相似文献   

2.
由下行床热解和提升管(或输送床)气化组合形成的流化床两段气化将煤气化反应过程解耦为煤热解和半焦气化两个反应阶段,热解产物完全进入气化反应器,利用其中的高温环境和输送的半焦催化作用分别实现焦油的热裂解与催化裂解,完成低焦油气化。利用该流化床两段气化的10 kg/h级实验室工艺实验装置,以榆林烟煤为原料、水蒸气/氧气作为气化剂,变化过量氧气系数ER、蒸汽炭比S/C、热解及气化温度等参数,研究水蒸气/氧流化床两段煤气化制备低焦油合成气的特性。结果表明,流化床两段气化系统可实现稳定运行(实验3 h以上),在ER=0.36和S/C=0.15时,热解和气化的代表温度分别稳定在735℃和877℃,合成气的CO、CO2、H2、CH4、C n H m 和N2含量分别为14.33%、10.07%、18.39%、9.89%、1.82%和45.50%,相应的合成气产量达到1.8 m3/kg,低位热值8.99 MJ/m3,焦油含量0.437 g/m3,展示了制备低焦油合成气的技术特征。对于实际的长时间连续运行,更高的气化温度将使流化床两段气化具有更好的低焦油特性。  相似文献   

3.
在高温固定床反应器中,以木屑炭为原料,进行木屑炭CO2气化的特性研究。考察了气化温度和CO2流量对燃气各组分体积分数、热值、固体产率、产气率的影响。结果表明:随着气化温度从750 ℃升高到950 ℃,CO体积分数明显增加,CO2体积分数明显减少,燃气热值增加较明显,而从950 ℃升高到1 050 ℃时,燃气热值增加趋势减缓。CO2作为气化介质,随着其流量增加,固体产率减少,气体产率增加,燃气组分中CO2体积分数明显增加,CO体积分数先增加后减少,燃气热值先增大后减小。CO2流量为15 mL/(min·g)时,燃气热值最大。气化温度950 ℃、CO2流量15 mL/(min·g)为较佳的气化条件,此时气化制备的气体中CO体积分数为51.51%,CO2体积分数为37.99%,燃气热值为8.03 MJ/m3,产气率为0.78 L/g。  相似文献   

4.
在固定床内进行了氧气、二氧化碳和水蒸气混合气氛下贫煤与玉米秸秆共气化实验.实验分析了秸秆比例、温度及氧浓度对生成可燃气体组分及热值的影响.结果表明:秸秆的加入促进了CO和烃类的生成,抑制H_2的生成,而过量的秸秆会降低各产气组分及气体热值.CO和H_2分别在秸秆比例为0.2和0时达到最大,秸秆比例为0.2时气化热值最高.升高温度能促进气化反应,提高产气组分,而过高的温度抑制了C_nH_m的生成.氧浓度的提高能显著提高气体组分及产气热值,理想的氧浓度为0.2.载气中加入适量CO_2可提高产气热值.  相似文献   

5.
以木屑为原料,利用高温固定床反应器,通过高温水蒸气气化制取富氢燃气,考察了气化温度(750~1000℃)和水蒸气流量(0.290~1.409 g/min)对燃气中H2的体积分数、热值、产气率等指标的影响。实验结果表明:不同的气化温度和水蒸气流量对燃气各组分体积分数有很大的影响,较高的气化温度和适当的水蒸气引入量有利于氢气的产生,但是过高的温度和过量水蒸气的引入会造成燃气热值降低。综合考虑各方面影响,水蒸气气化的最适条件为气化温度900℃,水蒸气流量1.033 g/min,在该条件下,所制得的气化燃气中H2体积分数为45.74%,热值为11.69 MJ/m3,产气率为1.96 L/g。  相似文献   

6.
由下行床热解和提升管(或输送床)气化组合形成的流化床两段气化将煤气化反应过程解耦为煤热解和半焦气化两个反应阶段,热解产物完全进入气化反应器,利用其中的高温环境和输送的半焦催化作用分别实现焦油的热裂解与催化裂解,完成低焦油气化。利用该流化床两段气化的10 kg/h级实验室工艺实验装置,以榆林烟煤为原料、水蒸气/氧气作为气化剂,变化过量氧气系数ER、蒸汽炭比S/C、热解及气化温度等参数,研究水蒸气/氧流化床两段煤气化制备低焦油合成气的特性。结果表明,流化床两段气化系统可实现稳定运行(实验3 h以上),在ER=0.36和S/C=0.15时,热解和气化的代表温度分别稳定在735℃和877℃,合成气的CO、CO2、H2、CH4、C n H m 和N2含量分别为14.33%、10.07%、18.39%、9.89%、1.82%和45.50%,相应的合成气产量达到1.8 m3/kg,低位热值8.99 MJ/m3,焦油含量0.437 g/m3,展示了制备低焦油合成气的技术特征。对于实际的长时间连续运行,更高的气化温度将使流化床两段气化具有更好的低焦油特性。  相似文献   

7.
基于Aspen Plus软件的Gibbs自由能最小化法,建立了煤粉在气流床中的富氧气化模型,该模型预测气化温度、产气组分和产气热值,与试验结果吻合良好。利用Aspen Plus的灵敏度分析模块研究氧气体积分数对气化温度、气体组分、产气热值、气体产率、有效气产率、碳转化率、气化效率及煤气污染物的影响,结果表明:随着氧气体积分数的增加,气化温度逐渐升高,H_2,CO和CO_2含量逐渐增加,而N_2的含量逐渐降低,气体产率逐渐降低,有效气产率逐渐增加,产气热值、碳转化率和气化效率逐渐升高。随着氧气体积分数的增加,粗煤气中H_2S的质量浓度逐渐增加。  相似文献   

8.
以竹屑为原料,使用氧气-水蒸气作为混合气化剂,在固定床气化反应器中进行竹屑的氧气-水蒸气气化实验,考察了气化温度、水蒸气流量和氧气用量比对竹屑气化制备富氢燃气的影响。研究结果表明:气化温度和水蒸气流量均对竹屑燃气中氢气体积分数影响较大,氢气体积分数随着气化温度的升高呈稳步增长趋势,随水蒸气流量增加呈先增加后减少趋势,分别在气化温度900℃和水蒸气流量0.7 mL/min时达到最大值;而随着氧气用量比的增加,氢气体积分数变化不明显。竹屑氧气-水蒸气气化制备富氢燃气最佳的气化条件为气化温度900℃、水蒸气流量0.7 mL/min、氧气用量比0.30,此条件下气化制备的燃气中氢气体积分数32.04%,热值11.37 MJ/m3,产气率1.40 L/g,燃气中CH4体积分数8.82%,CO体积分数26.34%,CO2体积分数30.55%,C2Hm体积分数2.24%。  相似文献   

9.
王璐璐  宋涛  张将  段媛媛  沈来宏 《化工学报》2019,70(6):2279-2288
基于化学链气化技术依靠气固反应定向调控气化产物中H2S和SO2摩尔比为2的优势,将化学链气化与Claus工艺中的催化转化单元相结合,提出了高硫石油焦化学链气化制合成气和回收硫磺的新系统。针对系统核心单元,即化学链气化过程,基于Aspen Plus,开展热输入10 MWth的高硫石油焦化学链气化过程模拟,以赤铁矿石为载氧体,水蒸气为气化介质,重点考察了氧碳比、气化温度对化学链气化过程及硫转化过程的影响。结果发现,氧碳比的增大导致合成气产率显著降低,但系统从需要外部提供能量逐渐转变为对外部放热,在氧碳比0.8669~0.9535区间内,系统可以达到热量自平衡。同时,气化温度的提高对合成气产率是有利的,在975℃时达到2.15 m3/kg,主要是由于CO体积分数随气化温度增加而增加。氧碳比和气化温度的提高都会导致H2S浓度的降低和SO2浓度的提高。并且研究了当H2S和SO2摩尔比为2的最佳工况时,氧碳比和气化温度为反相关,其中氧碳比为0.8669,气化温度为900℃时,冷煤气效率为64.09%。  相似文献   

10.
废菌棒是食用菌生产过程中产生的残余废弃物,其再利用对于资源节约与环境保护具有重要意义。本文采用循环流化床气化炉对废菌棒进行了气化试验,分别研究空气当量比、水蒸气配比对气化炉运行温度、气化燃气组分与热值、焦油含量、气化效率及碳转化率等气化特性的影响规律。结果表明:空气当量比由0.20增大至0.35时,循环流化床运行温度与碳转化率升高,气化燃气中的CO2体积分数增大,CO与焦油含量及气化燃气热值下降,气化效率呈现先增大后减小的趋势;空气当量比为0.26时气化效率达到最大74.86%,此时燃气热值为5.59MJ/m3。以空气为主气化介质,采用水蒸气作为辅助气化剂,可以改善气化燃气品质,提升气化效率。当空气当量比为0.26、水蒸气配比为0.2时,废菌棒具有较好的空气-水蒸气气化特性,燃气热值与气化效率分别达到最大值6.14MJ/m3与83.73%。  相似文献   

11.
Oxygen Gasification of Municipal Solid Waste in a Fixed-bed Gasifier   总被引:1,自引:0,他引:1  
abstract Four waste materials, paper, wood, textile and kitchen garbage, in municipal solid waste were gasified separately with oxygen in a fixed bed reactor. The yields of products char, tar and gas, ...  相似文献   

12.
为实现生物质能量的高效清洁利用,本研究基于两段式富氧气化系统改进燃气品质,并将获得的洁净高热值可燃气用于燃气轮机燃烧。通过Aspen Plus模拟研究分析了氧体积分数、气化温度对气化特性、燃机运行特性的影响,研究结果证实了生物质气化燃气在燃气轮机应用的可行性,并发现氧体积分数提高对改善生物质气化燃气品质及系统发电效率具有重要意义。两段式气化二次气化温度提高会引起气化效率及系统发电效率下降,因此气化温度需控制在合适范围。在满足生物质灰分完全熔融液化分离的前提下,气化温度可取较低值;两段式气化系统可选择氧体积分数为50%~60%时较佳。在氧体积分数60%、气化温度1200℃时,生物质气化-燃气轮机集成发电系统发电效率(η_(t))达最优,为34%,此时生物质可燃气低位热值(Q_(LHV))为9.54 MJ/m^(3),两段式气化效率(η_(CGE))为78.65%。  相似文献   

13.
以氧气-水蒸气-二氧化碳作为气化介质,松木屑为原料,采用Aspen Plus软件,结合自建模型,对生物质气化进行了模拟研究。首先,利用文献中的数据对模型进行了验证,模拟结果与文献中的数据基本吻合,证明了该模型的正确性。接着,考察了气化温度、氧气用量(cER)、水蒸气与生物质质量比(mS/mB)、二氧化碳与生物质质量比(mCO2/mB)对产气组成、气体热值、气体产率、气化效率和产气氢碳比(nH2/nCO)的影响。结果表明:在850℃、101.325kPa、cER=0.2、mS/mB=1、mCO2/mB=0.6的条件下,气化产物特性为气体热值7.45MJ/m3、气体产率1.78m3/kg、气化效率73.3%、氢碳比1.79。适当提高气化温度有利于气化。cER的增大使气体热值、产率和气化效率均迅速降低;但对产气中氢碳比的影响较小。此外,气化剂中水蒸气的适量增加有利于氢气的产生并能明显提高其体积分数,二氧化碳的适量增加有利于一氧化碳的产生并能在一定程度上提高其体积分数,二者均能有效调节产气的氢碳比。  相似文献   

14.
Chemical looping gasification (CLG) of Ningdong coal by using Fe2O3 as the oxygen carriers (OCs) was studied, and the gasification characteristics were obtained. A computation fluid dynamics (CFD) model based on Eulerian‐-Lagrangian multiphase framework was established, and a numerical simulation the coal chemical looping gasification processes in fuel reactor (FR) was investigated. In addition, the heterogeneous reactions, homogeneous reactions and Fe2O3 oxygen carriers' reduction reactions were considered in the gasification process. The characteristics of gas flow and gasification in the FR were analyzed and it was found that the experiment results were consistent with the simulation values. The results show that when the O/C mole rate was 0.5:1, the gasification temperature was 900 ℃ and the water vapor volume flow rate was 2.2 ml·min-1, the mole fraction of syngas reached a maximum value of the experimental result and simulation value were 71.5% and 70.2%, respectively. When the O/C mole rate was 0.5:1, the gasification temperature was 900 ℃, and the water vapor volume flow was 1.8 ml·min-1; the gasification efficiency reached the maximum value was 62.2%, and the maximum carbon conversion rate was 84.0%.  相似文献   

15.
厨余垃圾水热液化制取生物燃料   总被引:5,自引:1,他引:4  
张冀翔  王东  蒋宝辉  魏耀东 《化工学报》2016,67(4):1475-1482
以厨余垃圾为原料进行水热液化,考察了反应温度和料液比对产物分布的影响。温度320℃、料液比1:15时,生物油产率最高为16.7%,继续升高温度或降低料液比将促进气体产物生成。与重质原油、常减压渣油相比,生物油氧、氮元素含量较高,热值为32.33~34.82 MJ·kg-1,其中汽油和煤柴油馏分超过50%。利用GC-MS、FT-IR和FT-ICR MS对生物油化学组成、官能团和杂原子组成进行了表征。生物油是一种复杂混合物体系,已检测出烃类、酸类、醛类、酮类、酯类、胺类、酚类、醇类和含氮杂环类等多种物质,对其酸性组分进一步分析显示,含氧组分主要是O2、O3类化合物,含氮组分主要是N1O2、N1O3和N1O4类化合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号