首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
采用模压成型工艺制备了纳米SiO2颗粒和玻璃微珠共混改性的超高分子量聚乙烯复合材料;研究了相对滑动速度、载荷以及玻璃微珠含量对复合材料摩擦磨损性能的影响,并对磨损形貌和磨损机理进行了分析。结果表明:添加纳米SiO2颗粒和玻璃微珠可以提高复合材料的硬度、压缩弹性模量和摩擦磨损性能;相对滑动速度对复合材料摩擦因数和磨损率有很大的影响;载荷对复合材料的摩擦因数影响不明显,但磨损率随载荷的增加而增大;纳米SiO2颗粒和玻璃微珠混合改性后复合材料的磨损机理主要是粘着磨损和疲劳磨损。  相似文献   

2.
《机械科学与技术》2001,20(5):751-752
采用浇铸成型法制备了α-Al2O3/石墨/双马来酰亚胺自润滑复合材料,考察了α-Al2O3的含量和粒径对复合材料摩擦学性能的影响,用扫描电镜对磨损形貌和磨屑进行了分析,并对其磨损机制进行了探讨.结果表明α-Al2O3颗粒大小对摩擦系数、磨损量以及磨损机制有显著影响,含1500目α-Al2O3复合材料的摩擦学性能比含1200目α-Al2O3复合材料的要好得多.  相似文献   

3.
在Al-22Si-Zr(CO3)2体系中,用熔体原位反应法制备了内生Al2O3和Al3Zr颗粒增强铝基复合材料,用XRD、EPMA、SEM等方法对复合材料进行物相和显微组织分析;用磨损试验机测试了复合材料的室温干滑动摩擦磨损性能,并对其磨损机制进行了分析。结果表明:复合材料的磨损性能比基体合金有显著提高,随着内生Al2O3和Al3Zr颗粒体积分数的增加,复合材料的耐磨性能逐渐提高;随载荷增加,复合材料的摩擦因数呈降低趋势,且颗粒体积分数越大,摩擦因数越低;随颗粒体积分数的增大,复合材料的磨损机制由粘着磨损+磨粒磨损向磨粒磨损转变。  相似文献   

4.
α-Al_2O_3/石墨/双马来酰亚胺自润滑复合材料的研究   总被引:3,自引:0,他引:3  
采用浇铸成型法制备了α- A l2 O3/石墨 /双马来酰亚胺自润滑复合材料 ,考察了α- Al2 O3的含量和粒径对复合材料摩擦学性能的影响 ,用扫描电镜对磨损形貌和磨屑进行了分析 ,并对其磨损机制进行了探讨。结果表明 :α- Al2 O3颗粒大小对摩擦系数、磨损量以及磨损机制有显著影响 ,含 15 0 0目 α- Al2 O3复合材料的摩擦学性能比含 12 0 0目 α- Al2 O3复合材料的要好得多  相似文献   

5.
采用粉末冶金方法制备了SiC和石墨混杂增强铜基复合材料,研究了该复合材料在不同载荷条件下的摩擦磨损性能,并通过观察磨损表面形貌,研究其磨损机理。结果表明:在摩擦过程中,SiC颗粒作为载荷的主要承载单元,起到了较好的硬质承载支点的作用,石墨颗粒则发挥了较好的自润滑减摩效果,二者协同作用明显提高了铜基复合材料的耐磨性;该复合材料的磨损机理主要以磨粒磨损为主。  相似文献   

6.
以纯铜粉、锆粉、AlN粉为原料,采用放电等离子烧结方法制备了AlN/Zr-Cu复合材料,研究了AlN含量(1%~20%,质量分数,下同)对该复合材料微观形貌、力学性能和摩擦磨损性能的影响,分析了其磨损机理。结果表明:细小的AlN颗粒在铜合金基体中呈弥散分布;当AlN含量为1%~15%时,复合材料较致密,当AlN含量增加到20%时,其组织疏松;随着AlN含量的增加,复合材料的显微硬度和抗压强度都呈现出先增大后减小的变化趋势,摩擦因数和磨损量均先减小后增大,磨损机理由黏着磨损向磨粒磨损、剥落磨损依次转变。  相似文献   

7.
使用YS8硬质合金TiAlN涂层立铣刀分别对SiC颗粒和Al2O3颗粒增强铝基复合材料进行高速铣削试验,结合切削过程对刀具磨损形式、微观磨损形貌以及磨损机理进行了分析。结果表明:磨粒磨损、涂层脱落和微崩刃是涂层刀具的主要磨损形式;增强颗粒尺度越大,刀具微观磨损划痕和微崩刃凹坑越明显;涂层刀具铣削颗粒增强铝基复合材料不具备优势。  相似文献   

8.
采用粉末冶金技术制备纳米级ZrO_2陶瓷颗粒增强的CoCrW基复合材料,使用扫描电子显微镜、能谱仪、X射线衍射仪等分析复合材料的微观形貌和物相组成,通过球-盘式高温摩擦试验机,研究复合材料与Si_3N_4球配副在室温至1 000℃下的摩擦学性能。结果表明:ZrO_2陶瓷颗粒显著提高了复合材料的硬度;复合材料摩擦因数随温度的升高先小幅下降然后升高,并随温度的进一步升高而减小,磨损率随着温度的升高先增大后下降并趋于稳定,其中含ZrO_2复合材料在高温下具有更低的摩擦因数和磨损率,表明ZrO_2陶瓷颗粒显著提高了复合材料的高温耐磨性能。在低温下ZrO_2陶瓷颗粒增强CoCrW基复合材料表现出不同程度的磨粒磨损和塑性变形,高温下的磨损机制为氧化磨损。  相似文献   

9.
采用液相及热压成型法制备碳纳米管/聚丙烯复合材料,对其进行摩擦磨损测试,观察磨损表面形貌研究其摩擦机理。结果表明:超声分散可将2.0 wt%范围内的碳纳米管均匀分散在聚丙烯基体中,碳纳米管的加入可减小复合材料的摩擦系数、降低磨损率,有效地改善聚丙烯基复合材料的摩擦性能。当碳纳米管加入量为2.0wt%时,复合材料具有良好的摩擦性能:摩擦系数0.380、磨损率仅有3.47×10-8mm3/N·m,分别比聚丙烯降低了18.6%和57.7%。这主要归因于均匀分布的碳纳米管具有自润滑效应及良好的导热性,可有效地减小复合材料的摩擦系数,提高热稳定性,从而有效改善耐磨性;碳纳米管的添加使复合材料从粘着磨损转向磨粒磨损与疲劳磨损。  相似文献   

10.
用热压成型法制备了纳米氧化铝填充超高分子量聚乙烯(UHMWPE)复合材料,采用销盘式摩擦磨损试验机考察了纳米粒子对复合材料摩擦磨损性能的影响;采用扫描电子显微镜观察了复合材料磨损表面形貌,并借助X射线能谱仪对试样磨损表面进行了微区分析。结果表明:UHMWPE/nano-A l2O3复合材料中的纳米A l2O3粒子含量不同,其磨损表面的碳元素含量也发生不同程度的变化。填充质量分数为15%的纳米A l2O3能较好地改善UHMWPE/nano-A l2O3复合材料的摩擦磨损性能,其磨损表面出现了明显的贫A l区和富A l区,且富A l区以“岛”的形式分布在贫A l区中。  相似文献   

11.
《Wear》2006,260(7-8):705-710
Using a gas tungsten arc welding (GTAW) process, in situ synthesis TiC particles reinforced Fe-based alloy composite coating has been produced by pre-coated FeCrBSi alloy, graphite and ferrotitanium powders on the substrate. The microstructure and wear properties of the composite coatings were studied by means of scanning electron microscopy (SEM), X-ray diffractometer (XRD) and wear test. The effects of thickness of the pre-coated powder layer on the microstructure, hardness and wear resistance of the composite coatings were also investigated. The results indicated that TiC particles were produced by direct metallurgical reaction between ferrotitanium and graphite during the GTAW process. TiC particles with sizes in the range of 3–5 μm were dispersed in the matrix. The volume fraction of TiC particles and microhardness gradually increased from the bottom to the top of the composite coatings. The TiC-reinforced composite coatings enhance the hardness and wear resistance. The highest wear resistance of the composite coating with a 1.2 mm layer was obtained.  相似文献   

12.
《Wear》2006,260(1-2):25-29
Using a gas tungsten arc welding (GTAW) process, in situ synthesis TiC particles reinforced Fe-based alloy composite coating has been produced by preplaced FeCrBSi alloy, graphite and ferrotitanium powders. The microstructure and wear properties of the composite coatings were studied by means of scanning electron microscopy (SEM), X-ray diffractometer (XRD) and wear test. The effects of thickness of the pre-placed powder layer on the microstructure, hardness and wear resistance of the composite coatings were also investigated. The results indicated that TiC particles were produced by direct metallurgical reaction between ferrotitanium and graphite during the GTAW process. TiC particles with sizes in the range of 3–5 μm were dispersed in the matrix. The volume fraction of TiC particles and microhardness gradually increased from the bottom to the top of the composite coatings. The TiC-reinforced composite coatings enhance the hardness and wear resistance. The highest wear resistance of the composite coating with a 1.2 mm layer was obtained.  相似文献   

13.
Xian Jia  Xiaomei Ling 《Wear》2005,258(9):1342-1347
In the present study, the abrasive wear characteristics of Al2O3/PA1010 composite coatings were tested on the turnplate abrasive wear testing machine. Steel 45 (quenched and low-temperature tempered) was used as a reference material. The experimental results showed that when the Al2O3 particles have been treated with a silane coupling agent (γ-aminopropyl-triethoxysilane), the abrasive wear resistance of Al2O3/PA1010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PA1010 composite coatings and the linear correlation coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA1010 composite coatings. By treating the surface of Al2O3 particles with the silane coupling agent, the distribution of Al2O3 particles in PA1010 matrix is more homogeneous and the bonding state between Al2O3 particles and PA1010 matrix is better. Therefore, the Al2O3 particles make the Al2O3/PA1010 composite coatings have better abrasive wear resistance than PA1010 coating. The wear resistance of Al2O3/PA1010 composite coatings is about 45% compared with that of steel 45.  相似文献   

14.
以乙醇为溶剂及表面活性剂,以氨水为催化剂,利用正硅酸乙酯的水解得到氧化硅颗粒,并分析乙醇质量92%时制备的氧化硅颗粒呈球形,粒径分布均匀,表面光滑,呈单分散状态;乙醇质量分数为96%时制备的氧化硅颗粒粒径分布范围大,并且小颗粒团聚一体,聚集到大颗粒上.基于理想的氧化硅颗粒,利用化学沉淀法制备CeO2/SiO2复合磨料,并通过透射电子显微镜(TEM)及X射线衍射仪(XRD)对制备的样品进行表征.结果表明,制备的CeO 2/SiO2复合磨料为球形,粒径为150分数对制备的氧化硅颗粒以及氧化铈/氧化硅复合磨料分散性的影响.结果表明:水解体系中乙醇质量分数为71%时制备的氧化硅颗粒基本呈球形,粒径分布范围大,呈少量单分散状态;乙醇质量分数为~250 n m ,具有草莓状核壳的包覆结构,作为抛光磨料可以提高抛光表面质量.  相似文献   

15.
A. Ureña  J. Rams  M. Campo  M. Sánchez 《Wear》2009,266(11-12):1128-1136
Dry sliding wear of an AA 6061 alloy reinforced with both modified SiC particles and metal coated carbon fibres has been studied. SiC particles were used to increase the hardness of the composite while short carbon fibres are supposed to act as a solid lubricant. SiC particles were coated with a silica layer deposited through a sol–gel procedure to increase the processability of the composite and to enhance the particle–matrix interfacial resistance. The metallic coatings on carbon fibres were made of copper or nickel phosphorus which was deposited through an electroless process. The metallic coatings favoured the wetting of the fibres during processing and then dissolved in the aluminium matrix forming intermetallic compounds that increased its hardness. Wear behaviour of AA 6061–20%SiC and AA 6061–20%SiC–2%C was compared with that of the composites with the same reinforcement content but using coated particles and fibres. The influence that the modification of the matrix because of the incorporation of coatings on the reinforcements had on the mild wear behaviour was investigated. The wear resistance of the composites increased when carbon fibres were added as secondary reinforcement and when coated reinforcements were used.  相似文献   

16.
Matrix/reinforcement interface has a critical role in determining the properties of metal matrix composites (MMCs). Properties of matrix/reinforcement interface depend on the fabrication method. The main problem in the fabrication of MMCs is wettability between reinforcing particles and molten alloy. Al206/5 vol% aluminap cast composites were fabricated by the addition of reinforcing particles into molten Al alloy, semi-solid and liquid states, in two different forms: (1) as-received alumina (nano/micro) particles and (2) pre-synthesized composite reinforcement prepared via ball milling of alumina (nano/micro) with Al and Mg powders (master metal matrix composite). The effects of powder addition techniques, alumina/matrix interfacial bonding strength, and morphological characteristics of alumina particles on wear behavior were investigated. A new combination parameter, called alumina particle appearance (APA) index, was introduced. APA index approximates the collective effects of morphological characteristics of alumina particles on wear behavior. It is suggested that samples with lower APA index have superior wear properties. Microscopic examinations of the composite and matrix alloy and alumina/matrix interface were studied by scanning electron microscopy and transmission electron microscopy. It was found that wear resistance was increased in the composites fabricated by the addition of pre-synthesized reinforcing particles into molten alloy in the semi-solid state. Improvement in wear resistance is attributed to higher bonding strength of matrix/reinforcement as well lower APA index compared to those prepared via as-received alumina particles.  相似文献   

17.
《Wear》2006,260(7-8):728-734
A composite coating of WC/Hadfield steel was fabricated through centrifugal casting process to improve the impact wear resistance of Hadfield steel under the conditions of low or medium impact energy. The interfacial structure between WC ceramic particle and the steel matrix was analyzed with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The impact wear tests at different impact energy were carried out on a MLD-10 type impact wear rig to investigate the wear-resistant properties of three kinds of composites with different WC particle sizes. For comparison, the wear tests of Hadfield steel were also carried out under the same conditions. The results show that WC particles are partially dissolved in the steel during centrifugal casting. The elements W, C and Fe in steel react to form new carbides such as Fe3W3C or M23C6, which precipitate around former WC particles forming fine particles during subsequent solidification. So the interface between WC particles and Hadfield steel matrix is a strong metallurgical bonding. The composite reinforced with smaller WC particles has better impact wear resistance than that of Hadfield steel regardless of impact energy level. Whereas, the composite reinforced with larger WC particles has better impact wear resistance property than that of Hadfield steel when the impact energy is small but an opposite result is gained when the impact energy is higher. So, it is very essential to choose suitable size of WC particles as reinforcement in Hadfield steel to make the composite material more durable in the service conditions.  相似文献   

18.
Aluminium alloy (Al/3.25Cu/8.5Si) composites reinforced with fly ash particles of three different size ranges (53–75?μm, 75–103?μm and 103–125?μm) in 3, 6 and 9 wt-% were fabricated using liquid metallurgy technique. Pin on disc abrasive wear tests were carried against the disc surface fixed with SiC emery paper (120 grades). A mathematical model was developed to predict the abrasive wear and coefficient of friction of the composites. Analysis of variance technique was used to check the validity of the developed model. Composites reinforced with coarse fly ash particles exhibited better abrasive wear resistance than those reinforced with fine fly ash particles. Abrasive wear in composites with fine fly ash particles is a combination of adhesive wear and abrasive wear. Larger fly ash particles present in composites gets fractured into fine particles and entrapped between the composite pin and the disc, thereby decreasing the wear rate. Worn surfaces of the pins were then analysed using scanning electron microscopy to study the wear mechanisms of the composites. The abrasive wear was optimised using desirability based multiobjective optimisation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号