首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to fine equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.  相似文献   

2.
The as-extruded Mg-10 Al_2 Y master alloy was chosen as a novel grain refiner for as-cast Mg-3 Y alloy.Contrast samples of cast Mg-3 Y alloy added with pure Al and Mg-Zr master alloy grain refiners were prepared under the same conditions.In this study,the influence of addition amounts of Al_2 Y and holding time on grain refinement efficiency as well as tensile properties was investigated.And the grain refining ability of the Al_2 Y particles was systematically evaluated in terms of the addition amounts,number density of the Al_2 Y particles and holding time.The finest grains are achieved at 2 wt% Al_2 Y addition amount,which corresponds to number density of the polygonal Al_2 Y particles of 420-460 mm~(-2).The Mg-10 Al_2 Y master alloy has significant refinement performance and no refining recession occurs at the holding time within 60 min,or the settling time up to 180 min.Grain refinement and the second phase strengthening of uniformly distributed Al_2 Y particles contribute to the simultaneous enhancement on both strength and elongation of Mg-3 Y alloy.  相似文献   

3.
It has been known experimentally that TiAl3 acts as a powerful nucleant for the solidification of aluminum from the melt; however, a full microscopic understanding is still lacking. To improve microscopic understanding, hot rolling technique has been performed to the Al–5Ti–1B alloy and the effect of shape and size of the particles on grain refinement has been studied. The effect of hot rolling of Al–5Ti–1B master alloy on its grain refining performance and hot tearing have been studied by OM, XRD, and SEM. Hot rolling improves the grain refining performance of this master alloy, which is required to reduce hot tearing in Al–7Si–3Cu alloy. The improvement in grain refining performance of Al–5Ti–1B master alloy on rolling is due to the fracture of larger TiAl3 particles into fine particles during rolling. The presented results illustrate that the morphology of TiAl3 particles alter from the plate-like structure in the as-cast condition Al–5Ti–1B master alloy to the blocky type after rolling due to the fragmentation of plate-like structures. The grain refining response and effect on hot tearing of Al–7Si–3Cu alloy have been studied with as-cast and rolled Al–5Ti–1B master alloys. The results display hot-rolled master alloys revealing enhanced grain refining performance and minimizing hot tear tendency of the alloy at much lower addition level as compared to as-cast master alloys.  相似文献   

4.
将金属Al、Al3Ti和TiC以AlTiC中间合金的形式以及ZrO2颗粒共同引入Al2O3基体材料中,热压制备了Al2O3/TiC/ZrO2/AlN复合材料.在此基础上,添加(体积分数)1%透辉石作为烧结助剂,以实现复合材料的液相烧结并促进其致密化程度.复合材料在烧结过程中有新相AlN生成;同时Al、TiC以及Al3Ti释放的Ti原子发生原子重组生成Al2Ti4C.对热压后材料的硬度、断裂韧度和抗弯强度进行了测试和分析;探讨了透辉石对材料致密化程度及力学性能的影响效果;研究了复合材料断面断裂方式的变化对其力学性能的影响;并对AlTiC中间合金的细化特性进行了分析.  相似文献   

5.
Development of Al-Ti-C grain refiners containing TiC   总被引:32,自引:0,他引:32  
Cast Al-Ti-C grain refiners were synthesized by reacting up to 2 pct graphite particles of 20 micron average size with stirred Al-(5 to 10) pct Ti alloy melts, which generated submicron-sized TiC particles within the melts, and their solidified structures showed preferential segregation of the carbide phase in the grain or cell boundary regions and occasional presence of free carbon whose amount exceeded equilibrium values. At the usual melt temperatures of below 1273 K, though, TiC formed first, but was subsequently found to react with the melt forming a sheathing of A14C3 and Ti3AlC which resulted into poisoning of the TiC particles. However, it was possible to reverse these reactions in order to regain the virgin TiC particles by superheating the melts in the temperature region where TiC particles are thermodynamically stable. Grain refining tests using the TiC master alloys produced fine equiaxed grains of cast aluminum whose sizes were comparable to that obtainable with the standard TiB2 commercial grain refiner. TiC particles introducedvia the master alloys were found to occur in the grain centers, thereby confirming that they nucleated aluminum crystals. On leave from Regional Research Laboratory (CSIR), Bhopal, is Research Associate.  相似文献   

6.
Al-TiC insitu composites are gaining increasing importance because of good wettability of TiC with Al melt and its favourable properties. However, incomplete reaction between the released Ti and C in Al melt leads to formation of undesirable phases like Al3Ti which is detrimental to the properties. In this investigation, Al-TiC composites are processed at different temperatures from 700 °C to 1200 °C and with different Ti:C ratios to asses the effect of these two parameters on the formation of TiC particles. Microstructural features and X-ray diffraction results show that at temperatures below 1000 °C blocky type Al3Ti forms. As the temperature is increased the blocky nature of Al3Ti changes to needle like indicating release of Ti to a greater extent and as a result more and more TiC particles form. At 1200 °C there is no evidence of Al3Ti formation after a reaction time of 30 minutes. Increasing the carbon content (Ti:C ratio) to two fold of the stoichimetric amount does not show any significant effect. Though a four fold increase in carbon content showed some promise, however, some amount of free carbon was found to remain.  相似文献   

7.
The present work aims to report and discuss the development of a novel grain refiner (Al–Y–B master alloys) focusing on the characterization of the phenomena that exist during their production. Al–Y–B master alloy is produced by the combined employment of yttrium and boron, instead of yttrium or boron individually. It is discovered as a highly effective grain refiner for inoculating the grain size of Al–Si alloys. The crystallized microstructure can be refined though the effect of Y-based intermetallic on heterogeneity nucleus. The Y-based intermetallic is formed in the melts (Al–Y–B master alloy) by the addition of yttrium and KBF4 powers. A approach to produce Al–Y–B master alloys as well as its characterization by means of optical micrographs and SEM is presented. The study is assessed by testing the grain refining potency of the produced Al–Y–B master alloys in binary Al–20Si alloy. It is revealed that the approach employed to produce the Al–Y–B master alloys is suitable because the size of the primary phases is significantly reduced in each of the case investigated.  相似文献   

8.
《粉末冶金学》2013,56(3):277-282
Abstract

Transmission electron microscopy (TEM) as well as corresponding analytical techniques, such as high resolution TEM (HRTEM), energy dispersive X-ray (EDX) analysis, electron energy loss spectroscopy (EELS) and elemental mapping via a Gatan imaging filter (GIF), have been used to study the complex precipitation morphology of the commercial Fe–Cr–Al based oxide dispersion strengthened (ODS) alloy PM 2000. Formation of homogeneously distributed Y–Al–O ODS particles from Y2O3 added to the metal powder is shown. Besides these ODS particles, a large amount of complex Y–Al–O/Al2O3 and Y–Al–O/TiC as well as pure Al2O3 inclusions with sizes significantly larger than ODS particles have been identified. A typical feature is the growth of Al2O3 and Y–Al–O particles on the surface of small Ti(C,N) nuclei. Some implications of the results obtained from the mechanical properties of PM 2000 steel are discussed.  相似文献   

9.
采用两步法+铜模喷铸的方式制备具有颗粒增强和细晶强化作用的Mg-Al-Ti-C中间合金,并研究了其对AZ91D组织和性能的影响。通过OM、SEM、XRD、硬度及拉伸试验对中间合金和AZ91D的组织形貌和力学性能进行分析。结果表明,两步法制备得到了Mg-Al-Ti-C中间合金,经过铜模喷铸后,TiC颗粒尺寸大幅度减小,且弥散分布于Mg-Al-Ti-C中间合金中;用该细晶Mg-Al-Ti-C中间合金处理AZ91D,后者的抗拉强度提高了19.8%,硬度提高了64.9%;TiC颗粒既有颗粒增强作用,也能作为AZ91D凝固时的异质形核核心,起到细晶强化作用。  相似文献   

10.
Several years ago, Banerji and Reif[1] reported some very interesting studies on a process to react Ti and C in molten Al to form particles of TiC. The process was used to prepare a master alloy with a fine dispersion of TiC to inoculate Al for grain refinement. Approximately 2 wt pct of preheated graphite particles were stirred into the Al-5 to 10 pct Ti melts. The authors explained that the melts needed to be superheated above 1000 °C to avoid the undesirable formation of A14C3 and Ti3AlC at the TiC/melt interface. Their explanation for this phenomenon was based on thermodynamics. They observed that the standard free energy of formation curves for AI4C3 and TiC cross near 1175 °C, with A14C3 having the lower free energy of formation below this temperature. There are several aspects of this work which merit further discussion.  相似文献   

11.
Steel-matrix particulate composites were processed by direct addition of an Fe-TiB2 master alloy powder to a BS970:080M30 medium-carbon steel. This powder was produced using a self-propagating, high-temperature synthesis (SHS) reaction and consisted of a dispersion of fine TiB2 particles (2 to 5 μm), respectively, in an iron binder. The addition of the Fe-TiB2 powder resulted in the formation a parasitic Fe2B phase and TiC within the steel microstructure. In response to this, an SHS master alloy composed of Fe-(50 pct TiB2+50 pct Ti) was manufactured, which, when added to the steel, prevented the formation of Fe2B and resulted in a composite containing a mixture of TiB2 and TiC particles. The effect of master alloy composition and addition level on the microstructural phases generated is discussed in detail. The response to heat treatment of composite materials manufactured in this way was also investigated. It was found that an isothermal hold at 840 °C leads to a substantial softening of the material processed using the Fe-TiB2 additive, while at 1000 °C, a hardness level equivalent to that of the as-cast material was maintained. The same heat treatment of samples in which the formation of Fe2B was suppressed resulted in no appreciable difference in hardness level or microstructure.  相似文献   

12.
Al?CSi/Al4C3 master alloy has been developed by reacting the SiC particles in Al melt. The extent of SiC conversion to Al4C3 in the Al?CSi/Al4C3 master alloy has been calculated using optical emission spectroscopy. Experimental results indicated that only 70?% of SiC particles have been converted into Al4C3 after the reaction between Al and SiC in Al/5?wt% SiCp composites at 900?°C. The grain refining efficiency of Al?CSi/Al4C3 master alloy has been assessed by adding this into the Mg?C3Al alloy. Grain size of Mg?C3Al alloy has been significantly refined from 480 to 220???m by the addition of 0.07?wt% of Al4C3 particles in the form of Al?CSi/Al4C3 master alloy.  相似文献   

13.
铝合金/纳米碳管/钛复合层激光合金化组织   总被引:2,自引:0,他引:2  
使用真空镀的方法在铝合金表面形成CNTs/Ti/Al/…多层复合,经激光合金化形成复合涂层。利用X射线衍射和扫描电镜对复合层的相构成及微观组织进行了分析。结果表明:铝合金表面复合层在激光合金化后存在着TiC颗粒和CNTs,TiC的含量随着激光功率的增加而增加;CNTs仍保留其原有的管状结构,且在复合层中相互缠绕呈网状均匀弥散分布;反应原位合成的TiC颗粒尺寸均匀细小,附着于CNTs上.从而改善了CNTs与基体之间的结合性能。  相似文献   

14.
The results of modifying the Al–4% Cu alloy with test Al–1.04% Zr–0.70% Y and Al–1.23% Zr–0.39% Y master alloys are reported; the Zr-to-Y atomic-percentage ratio in the alloys is 1.41 and 3.08, respectively. The effect of small amounts of Zr and Y (from 0.1 to 0.3%) added in the form of test ternary master alloys of different compositions and binary Al–Zr and Al–Y master alloys on the grain refinement in the Al–4% Cu alloy has been studied. The structure of the initial alloy is characterized by pronounced directional solidification of the α phase. As the Zr + Y content increases, the columnar-crystal zone decreases and the equiaxed-crystal zone increases; at a (Zr + Y) content of 0.326%, only equiaxed crystals ~200 μm in size are present in an ingot. When Zr and Y are added with binary master alloys, the macrostructure of the modified Al–4% Cu alloys indicates that columnar crystals grow until their contact at the center of the ingot, and their growth is independent of the amount of added Zr and Y.  相似文献   

15.
The effects of combined addition of 0.6 wt.% Nd and 0.4 wt.% Y on the microstructure and mechanical properties of Mg-7Zn-3Al alloy were investigated.The results indicated that the Nd and Y addition led to obvious dendrite coarsening.However,it could modify the morphology and distribution of-Mg 32(Al,Zn) 49 intermetallics.Moreover,Al 2 REZn 2 phase could be introduced into the alloy with the Nd and Y addition.With the effective second-phase strengthening,the ultimate tensile strength and elongation in as-cast state can be improved by the Nd and Y addition.After ageing treatment,the alloy with the Nd and Y addition exhibited better precipitation strengthening effects by forming finer MgZn 2 and Mg 32(Al,Zn) 49 precipitates into the-Mg matrix.As a result,the yield and ultimate strength of Mg-7Zn3Al-0.6Nd-0.4Y alloy could be increased to 182 and 300 MPa by peak-ageing treatment.  相似文献   

16.
In the present work, ternary Al?CTi?CB master alloys have been prepared in an induction furnace by the reaction between preheated halide salts (K2TiF6 and KBF4) and liquid molten Al. A number of process parameters such as reaction temperature (800, 900, 1,000?°C), reaction time (45, 60, 75?min.) and compositions (Ti/B ratio: 5/1, 1/3) have been studied. The indigenously prepared master alloys were characterised by chemical analysis, particles size analysis, XRD and SEM/EDX microanalysis. Results of particle size analysis suggest that the sizes of the intermetallic particles [Al3Ti and TiB2 in Al?C5Ti?C1B and (Al, Ti)B2 in Al?C1Ti?C3B] present in various Al?CTi?CB master alloys increases with increase in reaction temperature (800?C1,000?°C) and reaction time (45?C75?min.). The population of the particles decreases with increase in reaction time and temperature. Further, SEM/EDX studies revealed that different morphologies of the intermetallic particles were observed at different reaction temperatures and reaction times. Further, the performances of the above-prepared master alloys were assessed for their grain refining efficiency on Al?C7Si alloy by macroscopy, DAS analysis. Grain refinement studies suggest that, B-rich Al?C1Ti?C3B master alloy shows better grain refinement performance on Al?C7Si alloy when compared to Ti-rich Al?C5Ti?C1B master alloy.  相似文献   

17.
利用Al、Ti、C粉末原料,采用铝熔体热爆法合成了相同成分不同微观组织形貌的两种Al-Ti-C中间合金晶粒细化剂。借助X射线衍射(XRD)、大型光学显微镜(MEF3)等分析手段研究了重熔保温时间对Al-Ti-C中间合金微观组织及细化效果的影响。结果表明:合成的两种Al-Ti-C中间合金均由Al、TiAl3和TiC组成。重熔时,保温时间对Al-Ti-C中间合金微观组织产生重要影响。随着重熔保温时间的延长,TiAl3会发生聚集、长大,而TiC颗粒有聚集倾向,但保温过程中,TiAl3和TiC相表现出较强的稳定性,并没有生成其他杂相如Al4C3等。重熔后的Al-Ti-C中间合金仍具有一定的晶粒细化能力。  相似文献   

18.
Al-Ti-C master alloys have a great potential as efficient grain refiners for aluminum and its alloys. In the present work, the Al-Ti-C master alloys are synthesized via a relatively novel technique through the reaction of a compacted mixture of K2TiF6 and graphite with molten aluminum. The obtained alloys are examined using scanning electron microscopy (SEM), energy-dispersive spectroscopy, and X-ray diffraction (XRD) methods. The results indicate that the produced Al-Ti-C master alloys contain TiC and TiAl3 particles within the aluminum matrix. Also, these alloys were evaluated using the KBI test mold. The results indicate that the produced Al-Ti-C master alloy is an efficient grain refiner for pure aluminum and its alloys compared with the Al-Ti-B one. The factors affecting the grain refinement of aluminum and its alloys are studied. The proper conditions for evaluating the efficiency of the produced Al-Ti-C master alloy to obtain a minimum grain size are as follows: temperature, 993 K (720 °C); holding time, 2 minutes; and (Ti/Al) weight ratio, 0.01 pct.  相似文献   

19.
Rare earth CeO2 was investigated as an additive for in-situ preparation of TiC/Al composites using XD (exothermal dispersion) + casting technology. Experiment results showed that an optimum CeO2 addition of 0.5 wt pct promotes the generation and refinement of TiC particles, prevents the formation of Al3Ti, increases the wettability between the TiC ceramic particles and the Al matrix, and improves the mechanical properties of composite. A corresponding thermodynamic model was proposed for the mechanism.  相似文献   

20.
In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号