首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In spite of significant advancements in automatic mesh generation during the past decade, the construction of quality finite element discretizations on complex three‐dimensional domains is still a difficult and time demanding task. In this paper, the partition of unity framework used in the generalized finite element method (GFEM) is exploited to create a very robust and flexible method capable of using meshes that are unacceptable for the finite element method, while retaining its accuracy and computational efficiency. This is accomplished not by changing the mesh but instead by clustering groups of nodes and elements. The clusters define a modified finite element partition of unity that is constant over part of the clusters. This so‐called clustered partition of unity is then enriched to the desired order using the framework of the GFEM. The proposed generalized finite element method can correctly and efficiently deal with: (i) elements with negative Jacobian; (ii) excessively fine meshes created by automatic mesh generators; (iii) meshes consisting of several sub‐domains with non‐matching interfaces. Under such relaxed requirements for an acceptable mesh, and for correctly defined geometries, today's automated tetrahedral mesh generators can practically guarantee successful volume meshing that can be entirely hidden from the user. A detailed technical discussion of the proposed generalized finite element method with clustering along with numerical experiments and some implementation details are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Tetrahedral elements are indispensable to complex finite element structural analysis. Two existing and two newly developed advanced 4‐node tetrahedrons are studied in this paper. The existing elements that use complicated displacement fields are significantly simplified. The spurious zero‐energy modes typical of all these elements are identified to be rigid‐body‐alike modes and are found to be naturally suppressible, making it possible to avoid any stabilization techniques and unknown parameters in formulation. Through the simplified form, we connect these four tetrahedrons and view them in a general framework of the partition‐of‐unity‐based approximation. This general view allows us to reveal many promising features of the newly developed tetrahedrons by comparing them with their existing counterparts: the newly developed tetrahedrons have straightforward formulation, no unsuppressed zero‐energy modes, no stabilization required, no unknown parameters contained, and a high consistency in implementation, in addition to good accuracy and extremely straightforward mesh generation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Extensions of a new technique for the finite element modelling of cracks with multiple branches, multiple holes and cracks emanating from holes are presented. This extended finite element method (X‐FEM) allows the representation of crack discontinuities and voids independently of the mesh. A standard displacement‐based approximation is enriched by incorporating discontinuous fields through a partition of unity method. A methodology that constructs the enriched approximation based on the interaction of the discontinuous geometric features with the mesh is developed. Computation of the stress intensity factors (SIF) in different examples involving branched and intersecting cracks as well as cracks emanating from holes are presented to demonstrate the accuracy and the robustness of the proposed technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
An extended finite element method scheme for a static cohesive crack is developed with a new formulation for elements containing crack tips. This method can treat arbitrary cracks independent of the mesh and crack growth without remeshing. All cracked elements are enriched by the sign function so that no blending of the local partition of unity is required. This method is able to treat the entire crack with only one type of enrichment function, including the elements containing the crack tip. This scheme is applied to linear 3‐node triangular elements and quadratic 6‐node triangular elements. To ensure smooth crack closing of the cohesive crack, the stress projection normal to the crack tip is imposed to be equal to the material strength. The equilibrium equation and the traction condition are solved by the Newton–Raphson method to obtain the nodal displacements and the external load simultaneously. The results obtained by the new extended finite element method are compared to reference solutions and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The node‐based or edge‐based smoothed finite element method is extended to develop polyhedral elements that are allowed to have an arbitrary number of nodes or faces, and so retain a good geometric adaptability. The strain smoothing technique and implicit shape functions based on the linear point interpolation make the element formulation simple and straightforward. The resulting polyhedral elements are free from the excessive zero‐energy modes and yield a robust solution very much insensitive to mesh distortion. Several numerical examples within the framework of linear elasticity demonstrate the accuracy and convergence behavior. The smoothed finite element method‐based polyhedral elements in general yield solutions of better accuracy and faster convergence rate than those of the conventional finite element methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Methods for constructing arbitrary discontinuities within spectral finite elements are described and studied. We use the concept of the eXtended Finite Element Method (XFEM), which introduces the discontinuity through a local partition of unity, so there is no requirement for the mesh to be aligned with the discontinuities. A key aspect of the implementation of this method is the treatment of the blending elements adjacent to the local partition of unity. We found that a partition constructed from spectral functions one order lower than the continuous approximation is optimal and no special treatment is needed for higher order elements. For the quadrature of the Galerkin weak form, since the integrand is discontinuous, we use a strategy of subdividing the discontinuous elements into 6‐ and 10‐node triangles; the order of the element depends on the order of the spectral method for curved discontinuities. Several numerical examples are solved to examine the accuracy of the methods. For straight discontinuities, we achieved the optimal convergence rate of the spectral element. For the curved discontinuity, the convergence rate in the energy norm error is suboptimal. We attribute the suboptimality to the approximations in the quadrature scheme. We also found that modification of the adjacent elements is only needed for lower order spectral elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A new 3-node triangular element is developed on the basis of partition of unity (PU) concept. The formulation employs the parametric shape functions of classical triangular element (TRIA3) to construct the PU and the least square point interpolation method to construct the local displacement approximation. The proposed element synergizes the individual merits of finite element method and meshfree method. Moreover, the usual linear dependence problem associated with PU finite elements is eliminated in the present element. Application of the element to several linear and geometric nonlinear problems shows that the proposed element gives a performance better than that of classical linear triangular as well as linear quadrilateral elements, and comparable to that of quadratic quadrilateral element. The proposed element does not necessitate a new mesh or additional nodes in the mesh. It uses the same mesh as the classical TRIA3 element and is able to give more accurate solution than the TRIA3 element.  相似文献   

8.
The performance of partition‐of‐unity based methods such as the generalized finite element method or the extended finite element method is studied for the simulation of cohesive cracking. The focus of investigation is on the performance of bilinear quadrilateral finite elements using these methods. In particular, the approximation of the displacement jump field, representing cohesive cracks, by extended finite element method/generalized finite element method and its effect on the overall behavior at element and structural level is investigated. A single element test is performed with two different integration schemes, namely the Newton‐Cotes/Lobatto and the Gauss integration schemes, for the cracked interface contribution. It was found that cohesive crack segments subjected to a nonuniform opening in unstructured meshes (or an inclined crack in a structured finite element mesh) result in an unrealistic crack opening. The reasons for such behavior and its effect on the response at element level are discussed. Furthermore, a mesh refinement study is performed to analyze the overall response of a cohesively cracked body in a finite element analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we analyse the p‐convergence of a new version of the generalized finite element method (generalized FEM or GFEM) which employs mesh‐based handbook functions which are solutions of boundary value problems in domains extracted from vertex patches of the employed mesh and are pasted into the global approximation by the partition of unity method (PUM). We show that the p‐version of our GFEM is capable of achieving very high accuracy for multiscale problems which may be impossible to solve using the standard FEM. We analyse the effect of the main factors affecting the accuracy of the method namely: (a) The data and the buffer included in the handbook domains, and (b) The accuracy of the numerical construction of the handbook functions. We illustrate the robustness of the method by employing as model problem the Laplacian in a domain with a large number of closely spaced voids. Similar robustness can be expected for problems of heat‐conduction and elasticity set in domains with a large number of closely spaced voids, cracks, inclusions, etc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The present paper deals with the enrichment of 3D low‐order finite elements. The used concept is based on the idea that a 3D virtual fiber, after a spatial rotation, introduces an enhancement of the strain field tensor approximation. A consistent stiffness matrix is obtained, allowing a better approximation of the actual solution compared with that resulting from low‐order finite elements. Implemented for two eight‐node hexahedral elements, the performance of the space fiber rotation concept is assessed by running some classical beam, plate, and shell benchmarks, and the obtained results are compared especially with those given by linear eight‐node and quadratic 20‐node hexahedral elements. In particular, it is shown that the developed elements accuracy is significantly superior to that of the classical eight‐node hexahedral element and close to that of the classical 20‐node hexahedral element. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A simplification of the 1984 Allman triangle (one of historically most important elements with rotational dofs) is presented. It is found that this old element takes a typical form of the partition of unity approximation. The Allman's rotation presented in the partition of unity form offers merits and convenience in formulation and practical applications. The stiffness matrix of the 1984 Allman triangle, which is originally computed from the linear strain triangular element (the 6 nodes quadratic triangle), can be obtained instead in a cheaper way from that of the constant strain triangular element. The constraint of the rotational terms during essential boundary treatment, which remains equivocal and ambiguous, is understood to be mandatory. The partition of unity notion enables a straightforward extension of the Allman's rotational dof to meshfree approximations. In numerical examples, we discuss suppression of spurious zero‐energy modes and patch tests. Standard benchmarks are carried out to assess performance of the newly formulated triangle and a meshfree approximation with the rotational dofs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The generalized finite element method (GFEM) was introduced in Reference 1 as a combination of the standard FEM and the partition of unity method. The standard mapped polynomial finite element spaces are augmented by adding special functions which reflect the known information about the boundary value problem and the input data (the geometry of the domain, the loads, and the boundary conditions). The special functions are multiplied with the partition of unity corresponding to the standard linear vertex shape functions and are pasted to the existing finite element basis to construct a conforming approximation. The essential boundary conditions can be imposed exactly as in the standard FEM. Adaptive numerical quadrature is used to ensure that the errors in integration do not affect the accuracy of the approximation. This paper gives an example of how the GFEM can be developed for the Laplacian in domains with multiple elliptical voids and illustrates implementation issues and the superior accuracy of the GFEM versus the standard FEM. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we investigate a numerical approach based on the partition of unity finite element method, for the time‐harmonic elastic wave equations. The aim of the proposed work is to accurately model two‐dimensional elastic wave problems with fewer elements, capable of containing many wavelengths per nodal spacing, and without refining the mesh at each frequency. The approximation of the displacement field is performed via the standard finite element shape functions, enriched by superimposing pressure and shear plane wave basis, which incorporate knowledge of the wave propagation. A variational framework able to handle mixed boundary conditions is described. Numerical examples dealing with the radiation and the scattering of elastic waves by a circular body are presented. The results show the performance of the proposed method in both accuracy and efficiency. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Partition of unity enrichment for bimaterial interface cracks   总被引:1,自引:0,他引:1  
Partition of unity enrichment techniques are developed for bimaterial interface cracks. A discontinuous function and the two‐dimensional near‐tip asymptotic displacement functions are added to the finite element approximation using the framework of partition of unity. This enables the domain to be modelled by finite elements without explicitly meshing the crack surfaces. The crack‐tip enrichment functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The concept of partition of unity facilitates the incorporation of the oscillatory nature of the singularity within a conforming finite element approximation. The mixed‐mode (complex) stress intensity factors for bimaterial interfacial cracks are numerically evaluated using the domain form of the interaction integral. Good agreement between the numerical results and the reference solutions for benchmark interfacial crack problems is realized. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
An improvement of a new technique for modelling cracks in the finite element framework is presented. A standard displacement‐based approximation is enriched near a crack by incorporating both discontinuous fields and the near tip asymptotic fields through a partition of unity method. A methodology that constructs the enriched approximation from the interaction of the crack geometry with the mesh is developed. This technique allows the entire crack to be represented independently of the mesh, and so remeshing is not necessary to model crack growth. Numerical experiments are provided to demonstrate the utility and robustness of the proposed technique. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
The ‘variable‐element‐topology finite element method’ (VETFEM) is a finite‐element‐like Galerkin approximation method in which the elements may take arbitrary polyhedral form. A complete development of the VETFEM is given here for both two and three dimensions. A kinematic enhancement of the displacement‐based formulation is also given, which effectively treats the case of near‐incompressibility. Convergence of the method is discussed and then illustrated by way of a 2D problem in elastostatics. Also, the VETFEM's performance is compared to that of the conventional FEM with eight‐node hex elements in a 3D finite‐deformation elastic–plastic problem. The main attraction of the new method is its freedom from the strict rules of construction of conventional finite element meshes, making automatic mesh generation on complex domains a significantly simpler matter. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A new method for the simulation of particulate flows, based on the extended finite element method (X‐FEM), is described. In this method, the particle surfaces need not conform to the finite element boundaries, so that moving particles can be simulated without remeshing. The near field form of the fluid flow about each particle is built into the finite element basis using a partition of unity enrichment, allowing the simple enforcement of boundary conditions and improved accuracy over other methods on a coarse mesh. We present a weak form of the equations of motion useful for the simulation of freely moving particles, and solve example problems for particles with prescribed and unknown velocities. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes an efficient, hierarchical high-order enrichment approach for the finite cell method applied to problems of solid mechanics involving discontinuities and singularities. In contrast to the standard extended finite element method, where new degrees of freedom are introduced for all finite elements located in the enrichment zone, we define the enrichment on a so-called overlay mesh which is superimposed over the base mesh. The approximation on the base mesh is obtained by means of the finite cell method where the hp-d method is employed to introduce the hierarchical extension on the overlay mesh. We present two different strategies for defining the enrichment on the superimposed overlay mesh. In the first approach, the enrichment is based on a local h-, p- or hp-refinement utilizing the finite element method on the overlay mesh. Alternatively, the enrichment is constructed by means of the partition of unity method introducing carefully selected enrichment functions suitable for the problem at hand. Our results reveal that the proposed method improves the accuracy of the finite cell method significantly with only a minimum number of additional degrees of freedom. In this paper we will focus on examples with material interfaces although the method can also be applied to problems involving strong discontinuities and singularities. Accurate stress distribution and an exponential rate of convergence are the two striking characteristics of the proposed method. Due to the hierarchical approach it paves the way to using different approaches for the approximation on the base and the overlay mesh and accordingly allows multiscale problems to be addressed as well.  相似文献   

19.
An extended finite element method (X‐FEM) for three‐dimensional crack modelling is described. A discontinuous function and the two‐dimensional asymptotic crack‐tip displacement fields are added to the finite element approximation to account for the crack using the notion of partition of unity. This enables the domain to be modelled by finite elements with no explicit meshing of the crack surfaces. Computational geometry issues associated with the representation of the crack and the enrichment of the finite element approximation are discussed. Stress intensity factors (SIFs) for planar three‐dimensional cracks are presented, which are found to be in good agreement with benchmark solutions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
An 8‐node quadrilateral plane finite element is developed based on a novel unsymmetric formulation which is characterized by the use of two sets of shape functions, viz., the compatibility enforcing shape functions and completeness enforcing shape functions. The former are chosen to satisfy exactly the minimum inter‐ as well as intra‐element displacement continuity requirements, while the latter are chosen to satisfy all the (linear and higher order) completeness requirements so as to reproduce exactly a quadratic displacement field. Numerical results from test problems reveal that the new element is indeed capable of reproducing exactly a complete quadratic displacement field under all types of admissible mesh distortions. In this respect, the proposed 8‐node unsymmetric element emerges to be better than the existing symmetric QUAD8, QUAD8/9, QUAD9, QUAD12 and QUAD16 elements, and matches the performance of the quartic element, QUAD25. For test problems involving a cubic or higher order displacement field, the proposed element yields a solution accuracy that is comparable to or better than that of QUAD8, QUAD8/9 and QUAD9 elements. Furthermore, the element maintains a good accuracy even with the reduced 2× 2 numerical integration. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号