首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pacific boreal streams and riparian zones are believed to receive significant N loads that are derived from the ocean in the form of decaying sockeye salmon (Oncorhynchus nerka). Using a small stream in south‐central Alaska we examined whether the associated riparian forest could take up the pulse of marine‐derived nitrogen (MDN) entering the hyporheic zone from spawning and dying sockeye salmon. We evaluate the relative importance of riparian uptake and denitrification in nitrate‐N removal in hyporheic sediment. We found that maximum biological removal of nitrate peaked within 1 h of water entering the hyporheic zone, decreasing exponentially with subsurface flow duration. Plant and microbial uptake reached 14 µg NO‐N L?1 min?1 and denitrification reached 4 µg NO‐N L?1 min?1 during the initial 2 h of transit time. Our results reinforce the hypothesis that MDN from Pacific salmon can be transferred to riparian zone via hyporheic flow. Most nitrate‐N removal along hyporheic flow paths is by plant and microbial uptake (the respective contributions could not be determined). Denitrifying bacteria are present and active in the hyporheic zones of this well‐oxygenated Alaskan stream but their contribution to the nitrate‐N removal is small compared to plant and microbial uptake in such nitrate‐N poor environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrochemical changes were monitored in a simulated, sea run salmon redd in a small agricultural stream in northeast Scotland following the 1998–1999 spawning season. Immediately after redd construction, the hydrochemical characteristics of hyporheic water, at depths of 0.1 m and 0.3 m, were very similar to stream water. These apparently well‐mixed waters were alkaline, well‐oxygenated and enriched in nutrients. In the weeks and months following redd construction, clear and statistically significant differences in the chemistry of stream and hyporheic waters were observed. Typically, hyporheic water had lower concentrations of dissolved oxygen (mean 7.35 mg L?1 at 0.3 m depth) than stream waters (mean=11.26 mg L?1). Alkalinity, calcium, sulphate and conductivity levels tended to be higher in hyporheic waters, with concentrations increasing with depth. These data implied an increasing influence of groundwater with depth in the hyporheic zone following redd construction; an inference supported by subsequent hydraulic head measurements, which revealed an upwards groundwater flux in the stream bed. However, groundwater–surface water interactions were dynamic and complex: road salts eluted into the stream during periods of snowmelt simulated tracer experiments that implied that a reversed hydraulic gradient may occur at high flows with deeper streamwater penetration and mixing in the hyporheic zone. High flows also result in the mobilization of fine sediments from the stream bed which subsequently infiltrated into spawning gravels. These appear to cause ‘capping’ of redds and probably reduce the hydraulic conductivity of the redd matrix. Infiltrating sediments also contain a small, but probably important organic component, the decomposition of which may contribute to oxygen consumption and nutrient mineralization in the hyporheic zone. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
中国已建各类水库近10万座,水库建设改变了原河流水动力条件,影响了水体物质场、能量场、化学场和生物场,究竟是"削减了水体净化功能"还是"强化了水体去污能力"目前尚不明确。本文系统总结了开放水体脱氮过程研究进展,主要包括:(1)厌氧反硝化(Denitrification)、厌氧氨氧化(Anaerobic ammonium oxidation)、好氧反硝化(Aerobic denitrification)和厌氧甲烷氧化(Anaerobic methane oxidation)等是目前开放水体脱氮的4个典型过程;(2)潜流带、沉积物、溶解氧极小层及悬浮颗粒等是开放水体脱氮的主要发生区域;(3)溶解氧、碳氮比、硝酸盐浓度、温度、pH值是影响开放水体脱氮效率的直接因素。建议通过开展"出入库氮形态持续观测及氮负荷平衡计算"、"水库不同载体脱氮机制原位研究方法构建"、"水库脱氮机制及氮移出通量研究"和"自然河流与水库脱氮效率对比研究"等方面的研究来回答"水库强化水体脱氮能力"这一科学假设,以期为发掘水库的脱氮除污功能、深入认识水库的生态环境影响提供一个新的研究思路。  相似文献   

4.
Nutrient export from agricultural land to surface waters is a significant environmental concern within the Great Lakes Basin (GLB). A field-based watershed-scale study was completed to investigate spatial and temporal variations of phosphorus and nitrate to assess nutrient transport pathways and groundwater-surface water interactions in an agriculturally dominated clay plain system. This was conducted in the 127 km2 Upper Parkhill Watershed, near Lake Huron in southwestern Ontario, Canada. Data collection occurred from June 2018 to May 2019 via continuous sensor deployment and discrete sampling of stream water, groundwater, hyporheic zone, and tile drainage water. Samples were analyzed for various nutrient species (total, total dissolved, soluble reactive, and particulate phosphorus, and nitrate-N) to examine the hydrological dynamics of principal transport pathways of agriculturally-derived nutrients. Total phosphorus and nitrate concentrations in stream water ranged from 0.007 to 0.324 mg/L and 0.32 to 13.13 mg NO3?-N/L, respectively. Tile drainage water total phosphorous concentrations varied from 0.006 to 0.066 mg/L. Groundwater total dissolved phosphorus concentrations ranged from <0.003 to 0.085 mg/L. Transport of phosphorus through tile drainage was observed to be greater than through groundwater over the study period. No distinct relationship was observed between nutrient concentrations in the hyporheic zone and the vertical hydraulic gradient within this zone in the studied stream reach. Preliminary correlations were discerned between water quality observations and recognized land management practices. Given the elevated stream nutrient concentrations, these results are consequential for the continual improvement of strategies and programs devised to conserve water resources within the GLB.  相似文献   

5.
Nitrogen dynamics were studied in the interstitial environment (i.e. hyporheic zone) of a sandy‐bottom stream in a rural landscape. A third‐order stream in Brittany (France) was studied at 11 stations (riffles) to evaluate spatial patterns of water exchange between surface and interstitial habitats. More intensive sampling was conducted in three riffles selected according to their hydrological characteristics. Chemical characteristics (especially nitrogen) and microbial denitrification were studied at 12.5 and 25 cm depth upstream, and 25 cm depth downstream of each riffle. This study confirms that the interstitial habitat of a N‐rich stream acts as a sink for the nitrate‐nitrogen. Experimental manipulation of sediment cores indicates that denitrification is limited by carbon in surface (i.e. benthic) and by nitrate in hyporheic sediments. River regulation increases inputs of fine sediments, modifies river channel location, and generates changes in the spatial patterns of biogeochemical processes, water origins, and hydrologic exchanges. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Physicochemical relationships in the boundary zone between groundwater and surface water (i.e. the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble‐bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with river stage recordings, continuous readings were made of water temperature, specific conductance, dissolved oxygen and water level of the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to covariance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 × 10?4 cms?1) and the least at the most permeable location (K = 8.0 × 10?3 cms?1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment in which to study hydrogeologic processes over relatively short time periods (i.e. days to weeks) that would require much longer periods (i.e. months to years) to evaluate in unregulated systems. Copyright © 2006 John Wiley & Sons Ltd.  相似文献   

7.
Maximizing the reduction of nitrate to dinitrogen gas (denitrification) has been advocated as a means to decrease nitrate pollution that causes eutrophication and hypoxia in estuaries worldwide. Managing this flux in bottomland forest wetlands of the Mississippi River could potentially reduce the world's second largest hypoxic zone. We used published denitrification rates, geospatial data on habitat area and inundation frequency, water level records (1963–2011), and average monthly temperatures to estimate annual denitrification in the Atchafalaya River Basin, the principal distributary of the Mississippi River. Denitrification rates ranged from 5394 kg N year?1 (3.07 kg N km?2 year?1) in 1988 to 17 420 kg N year?1 (9.92 kg N km?2 year?1) in 1981, and rates were consistently higher in fall compared with those in spring. Total NO3? denitrified in the basin was negligible compared with total NO3? entering the Gulf of Mexico. If all N denitrified in the basin instead entered the Gulf, the hypoxic zone was predicted to increase only 5.07 km2 (0.06%). This negligible effect of the basin on N dynamics in the Gulf agrees with other mass balance and isotopic studies in the region. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Sediment cores collected from several stations throughout Lake Baikal in water depths from 100 m off the Selenga River delta to the deepest basin of the lake (~1640 m), have been analyzed for sedimentary organic carbon, nitrogen, and the remineralized components in pore water. The organic carbon content of surface sediments generally varied from 2.3 to 3.2% by weight, and profiles typically showed an exponential decrease in both organic carbon and nitrogen in the upper 20–30 cm of the sediment column. Steady state models of organic matter diagenesis yield first order decomposition rate constants which range from 0.0009 to 0.022 y−1. The calculated residence times for the metabolizable fraction of the organic matter in these sediments increases roughly with increasing water depth and is on the order of 50–300 years. Pore water concentration profiles were determined for dissolved inorganic carbon, dissolved organic carbon (DOC), methane, and dissolved ammonium. At depth (25–30 cm) methane concentrations ranged from 50 to 800 μmol Lpw−1 and DOC from 400 to 900 μmol Lpw−1. Estimation of carbon recycling rates based upon diffusion along pore water concentration gradients at the sediment-water interface, indicate that combined DOC and methane fluxes generally contribute <15% of the overall turnover of sedimentary organic carbon. Comparisons to Laurentian Great Lakes environments show trends in sediment deposition, organic matter remineralization, and the time scales of carbon recycling across nearly two orders of magnitude with the fraction of organic content buried generally decreasing with decreasing sedimentation rates.  相似文献   

9.
Over a 3.5 year period, levels of dissolved oxygen (DO) saturation were continuously monitored in surface waters and at depths of 150 and 300 mm in the hyporheic zone of a riffle in a montane stream where Atlantic salmon spawn. Throughout this period, DO in surface waters remained close to 100% saturation, but exhibited daily variations related to CO2 cycling driven by diurnal patterns of respiration and photosynthesis. However, in the hyporheic zone, variations were much more dynamic over storm event, seasonal and inter‐annual timescales. At 300 mm, DO saturation was generally close to 100% during summer low flows, though levels occasionally fell during warm periods which appeared to be related to diffusion gradients caused by benthic respiration. Such DO decreases at low flows were much more common and marked at 150 mm. During wetter conditions, DO saturation at 300 mm fell to zero for prolonged periods; this is consistent with increased fluxes of groundwater discharging through the hyporheic zone. During the wettest periods this also affects DO saturation at 150 mm. However, during hydrological events, hyporheic water quality is ‘re‐set’ as head reversals cause streamwater ingress which results in transient periods of re‐oxygenation, which end during the hydrograph recession. This is consistent with stream‐ward hydraulic gradients being re‐established in riparian ground water as the stream stage falls. The connectivity between groundwater and streamwater through the hyporheic zone is driven by climatic conditions and is reflected in marked inter‐annual variability in water quality characteristics. In some cases, this variability may have implications for the ecology of the hyporheic environment—including the survival of salmon eggs—particularly if oxygen levels are affected. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Extended loss (up to 70%) of nitrogen is observed in a nitrifying rotating biological contactor (RBC) treating ammonium - rich leachate of a hazardous waste landfill. Due to pretreatment (flocculation, BOD-removal, activated carbon) DOC was less than 20 mg/l so heterotrophic denitrification can be excluded. The nitrification rate reaches 3-4 g NH4-N m−2 d−1 at a pH of 7-7.3 in the first two of three RBC compartments. An increasing partial pressure of oxygen and ammonium concentration favor nitrogen removal over ammonium oxidation. The reduction of nitrite produced in the aerobic biofilm layer close to the surface might therefore be coupled with ammonium oxidation and takes place in the deeper or temporarily anoxic layer of the biofilm.  相似文献   

11.
Reintroduction of fall Chinook salmon into the Swan Falls Reach of the Snake River is of regional interest; however, water quality has been considerably degraded. We examined the quality of the incubation environment within historic spawning sites by monitoring temperature, dissolved oxygen (DO) and the presence of hydrogen sulphide (H2S) within the water column, the undisturbed hyporheic zone, and simulated redds, during two annual periods representative of fall through spring incubation periods. The hydrographs of the two years differed, with year one representative of high flows and year two of low flows. The thermal regime during the two years also differed: year one was warmer overall than year two. Water column DO remained near saturation throughout both years. Within the undisturbed hyporheic, DO was lower than in the water column during both years, and quickly decreased to relatively anoxic conditions. During both years, the DO within simulated redds remained sufficiently high (> 7.0 mg l?1) to support fall Chinook incubation through the hatch phase of development. However, as each incubation season progressed, conditions in simulated redds decreased to less than 6.0 mg l?1 prior to the estimated beginning of emergence, and tended toward levels less than 4.0 mg l?1 prior to the estimated completion of emergence. Hydrogen sulphide was detected at highly toxic levels in the hyporheic zone and within some simulated redds during both years. Depressed DO conditions and the presence of H2S within simulated redds prior to, and throughout the period of estimated emergence suggest that survival of incubating salmon in the Swan Falls reach would be variable and low, and that relative survival would not be sufficient to support the reintroduction and sustainability of a viable population of fall Chinook salmon to that reach. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Many streams of southwestern Australia have become secondarily saline through land clearance and other human activities in their catchments. Elevated salinities impact on aquatic biota and ecological processes of surface streams but little is known of the effects on the diversity and community composition of hyporheic (subsurface) invertebrates occupying the saturated sediments where surface and groundwaters exchange. We hypothesized that biodiversity of hyporheic invertebrates would decline with increasing salinity, especially where saline groundwater upwelled into the surface stream. We also predicted changes in community composition associated with salinity and direction of vertical hydrological exchange. Water and hyporheic invertebrates were sampled from downwelling and upwelling zones of 13 streams in southwestern Australia ranging in median surface water salinity from 0.27 to 17.86 g L−1. Overall, taxa richness of hyporheic invertebrates was uncorrelated with salinity but, surprisingly, correlated positively with the salinity of upwelling water. However, when the sites were divided into ‘fresh’ (<3 g L−1) and ‘mesosaline’ (>3 g L−1) groups, this relationship became non‐significant. Instead, taxa richness and total abundance were correlated positively with salinity of downwelling water in fresh sites and negatively in mesosaline sites, resulting in a peak in richness at intermediate salinities. Community composition was unrelated to direction of hydrological exchange but was strongly associated with hyporheic salinity. Hyporheic assemblages of ‘fresh’ rivers were typified by harpacticoid copepods and candoniid ostracods, whereas the amphipod Austrochiltonia and several dipteran groups were more common below ‘mesosaline’ rivers. Although many hyporheic taxa collected in this study apparently have broad tolerances to salinity, secondary salinization due to human activities potentially changed community composition, possibly altering rates of ecological processes such as organic matter breakdown occurring within the sediments of streams undergoing salinization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
An understanding of ongoing changes in salinity and nutrient status, as influenced by anthropogenic forcing factors, is important for integrated lake basin management (ILBM) and conservation of water resources in dry tropical regions. This study analysed a range of water quality attributes, including salinity, nitrate (NO3?), ammonia (NH4 + ), phosphate (PO4 3 ?) and dissolved organic carbon (DOC) in two freshwater lakes in Rajasthan, India for three consecutive years (2000–2002). Between‐lake comparisons indicated marked differences in most of the water quality variables. The pH in both study lakes remained above neutral. Water hardness, salinity and concentrations of total dissolved salts (TDS), chlorides, NO3?, NH4+, PO33? and DOC were high in Lake Udaisagar, which received inputs from agricultural drainage and urban–industrial releases. The DOC in Lake Baghdara, which drains a woodland catchment, was similar to that for Lake Udaisagar, indicating the role of allochtonous inputs in the build‐up of DOC. The results of this study indicated that increasing human interferences have increased the nutrient concentrations in Lake Udaisagar. This factor, coupled with extended periods of dryness, drives these two freshwater lakes towards a high salinity. This study provides evidence of a human‐induced salinity increase and has relevance for ILBM and for the conservation of freshwater resources in dry regions.  相似文献   

14.
Carbon gases (methane, CH4, and carbon dioxide, CO2) were measured for the first time in sediments of the Lobo‐Broa Reservoir, near São Carlos in São Paulo State, Brazil. It is believed these are the first measurements of this kind in any of the many reservoirs located in Brazil. Even though the Lobo‐Broa Reservoir is classified as oligotrophic, the sediment gas concentrations were exceedingly high, ranging from 0.4–3 mmol L?1 for CH4 and 1–9 mmol L?1 for CO2. Both gases exceeded their in situ gas saturation values at these shallow water depths (7 m in central basin; 11 m at dam), resulting in numerous sediment bubbles. Organic matter was highly concentrated in the reservoir sediments, averaging 25.5% loss on ignition (LOI) (dam) to 26.9% LOI (central basin) for the 0–12 cm depth interval, with values as high as 29–30% LOI (12% organic carbon) in the surface 0–5 mm layer. The theoretical flux of dissolved pore water carbon gases to the sediment–water interface (SWI) averaged 3.4 mmol L?1 m?2 day?1 CH4 and 7.3 mmol L?1 m?2 day?1 CO2 for the surface 0–10 mm. From gas emission measurements at the water surface, it was calculated that 90% of CH4 is consumed either at the SWI or in the water column, resulting in a loss of 0.31 mmol L?1 m?2 day?1 of CH4 to the atmosphere. However, only 20% of the total CO2 gas transported across the water–atmosphere interface (36.3 mmol L?1 m?2 day?1, or 1600 mg CO2 m?2 day?1) was produced in the sediments. The remaining 80% of CO2 probably comes from other carbon sources. With CH4 oxidation in the aerobic water column, close to 30% of the carbon gas flux to the atmosphere could be accounted for by gas production of CO2 and CH4 in the sediments and their diffuse transport to the water column.  相似文献   

15.
Instream restoration strategies do not generally consider the subsurface environment. The study of recently restored stream reaches can provide an opportunity to assess the impacts of restoration on surface–subsurface exchange. In this study, lateral hyporheic zones occurring in a constructed gravel bar and re‐meandered stream reach were examined, using hydrometric data in combination with differences in background conservative ion and tracer injection experiments. Both the constructed gravel bar and the meander bends induced lateral hyporheic exchange flow. In the gravel bar, lateral hyporheic exchange increased after a riffle‐pool sequence was constructed in the channel adjacent to the bar. The substrate in the meander bends had low saturated hydraulic conductivity, and the stream–subsurface exchange was limited despite the large change in channel configuration. These results suggest that to enhance and maintain stream–subsurface water exchanges, restoration projects that modify horizontal geometry should involve construction of vertical morphologic features, and where floodplain sediments are fine‐grained, the addition of coarse sediments should also be incorporated in the design. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This study examines temporal variation in dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations in streams in the Han River watershed, Korea. On days without significant antecedent rain, DOC and POC concentrations ranged from 0.87 to 3.23 mg C/L and 0.24 to 2.92 mg C/L, respectively. Following rain events, both DOC and POC concentrations were higher. Soil and compost had δ13C values similar to stream δ13C-DOC and δ13C-POC. These results demonstrate the importance of studies using tracer approaches and the value of research on sources of organic carbon transported in streams in multiple use monsoonal watersheds.  相似文献   

17.
A new anaerobic-oxic biological filter reactor, which was packed with carbon fibre and aerated with micro-bubbles, was proposed. The reactor performance was examined using dye works wastewater compared with the activated sludge reactor. Effluent SS from the experimental reactor was significantly lower than that from the activated sludge reactor, and transparency was higher. Temperatures of the activated sludge reactor were over 35 degrees C and DOC removal ratios were 40-80% depending on the influent wastewater. On the other hand, the DOC removal efficiency of the experimental reactor was over 70%, when the reactor temperature was over 22 degrees C. In the anaerobic zone, sulphate reduction occurred predominantly and acetate was produced. In the oxic reactor, sulphur oxidation and organic removal occurred. When the amount of sulphate reduction in the anaerobic zone increased, DOC and colour in effluent decreased. The sulphate reducing activity of biofilm at 30 degrees C was three times higher than those at 20 degrees C. The sulphate reducing activity of biofilm in the oxic zone was higher than those in the anaerobic zone, meaning that the sulphate reduction-oxidation cycles were established in the biofilm of the oxic zone. Microbial community of sulphate reducing bacteria was examined by in situ hybridisation with 16S rRNA targeted oligonucleotide probes. Desulfobulbus spp. was most common sulphate reducing bacteria in the anaerobic zone. In the oxic zone, Desulfobulbus spp. and Desulfococcus spp. were observed.  相似文献   

18.
While numerous studies have examined N dynamics along a river continuum, few have specifically examined the role of biofilms. Nitrogen dynamics and microbial community structure were determined on biofilms at six sites along a 120 km stretch of the lowland Ovens River, South Eastern Australia using artificial substrates. Terminal restriction fragment length polymorphism (T‐RFLP), chlorophyll a and protein analyses were used to assess biofilm microbial community composition. N dynamics was determined on the biofilms using the acetylene (C2H2) block technique and assessing changes in NH, NOx and N2O. Unlike microbial community structure, N dynamics were spatially heterogeneous. Nitrification, determined from the difference in accumulation of NH before and after addition of C2H2, occurred mostly in the upper sites with rates up to 1.4 × 10?5 mol m?2 h?1. The highest rates of denitrification occurred in the mid‐reaches of the river (with rates up to 1 × 10?5 mol m?2 h?1) but denitrification was not detected in the lower reaches. At the very most, only 50% of the observed uptake of NOx by the biofilms following addition of C2H2 could be accounted for by denitrification. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of hyporheic water quality on developing salmonids was assessed between spawning and hatch. Results from a low‐lying degraded agricultural catchment (Newmills Burn) were compared with those from a near‐pristine upland spawning stream (Girnock Burn), providing a set of comparisons beyond the range of hyporheic conditions present in the Newmills Burn. It was demonstrated that hyporheic water quality in the Newmills Burn varied temporally and spatially as a consequence of variable fluxes of chemically reduced groundwater through heterogeneous drift deposits. Mortality rates from samplers located within artificial redds ranged from 0 to 100% and showed a clear negative relationship with mean dissolved oxygen (DO) concentrations (r2 = 0.85, P < 0.01). Where embryo mortality was less than 100%, low DO appeared to affect rates of embryo development. Embryos exposed to lower DO concentrations were observed to have a higher percentage mass of yolk sac than those developing in more favourable conditions. The chemical characteristics of hyporheic water in the stream were indicative of the mixing of longer residence regional groundwater with local surface water at shallow depths. The hyporheic water of the Girnock Burn approximated closely to that of surface water suggesting a local origin. Hyporheic water quality affects egg survival and may limit recruitment when egg deposition is marginal or inadequate. A consideration of hyporheic dynamics and groundwater–stream interactions should form part of channel modification or restoration works in salmonid spawning streams. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Benthic respiration is an important measure of decomposition processes occurring in streams, but our understanding of benthic respiration in lowland rivers is not well developed, particularly the factors that affect benthic respiration. In our study we measured benthic respiration at three sites in three contrasting lowland rivers in southeastern Australia. On most sampling occasions, rates of oxygen consumption in benthic chambers were linear. However, oxygen consumption rates fitted exponential decay curves during periods of highest microbial activity. Benthic community respiration ranged from 289 to 619 mg O2 m2 d?1 in the Broken River, from 178 to 1438 mg O2 m2 d?1 in the River Murray and from 127 to 2178 mg O2 m2 d?1 in the Ovens River. Benthic respiration was closely correlated with water temperature, but not with sediment carbon content, sediment particle size, water column nutrients or water column dissolved organic carbon concentrations. Average carbon turnover periods were between 1.7 and 6 years for the three rivers, but were as low as 0.1 year immediately following an event that gave rise to mobilization of in‐stream dissolved organic carbon, sufficient to produce coloured water. The latter occurred in the Ovens River as a consequence of a rain event during a period of base‐flow. Flow regime as such did not have a major impact on benthic community respiration. Induced changes in respiration, by altering flows, would only occur by altering the quality and timing of carbon inputs, since temperature and carbon quality, rather than quantity, appear more important in determining lowland river benthic respiration. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号