首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用超音速火焰喷涂技术在Ni718合金表面制备WC-17Co涂层.利用反复弯曲试验分析25,150,300℃条件下涂覆WC-17Co涂层Ni718合金疲劳性能,利用扫描电镜、X射线衍射仪分析涂层的断口形貌和相组成,并利用剥层法测量涂层中残余应力分布.结果表明,相同应变量条件下试样的疲劳寿命随着温度的升高而降低;循环载荷作用下裂纹由涂层表面产生,向基体方向扩展,最终形成整体断裂;室温至300℃温度范围内,涂层不会发生相变,但是随环境温度上升涂层中的残余压应力呈现下降趋势,这种趋势使得涂层中裂纹的扩展速度增加,最终导致疲劳寿命下降.  相似文献   

2.
超声红外热成像无损评估技术   总被引:1,自引:0,他引:1  
江涛  杨小林  阚继广 《无损检测》2009,(11):884-886
超声红外热成像技术是一种新的无损检测方法,它是利用低频超声脉冲波作用在不同的材料或者结构上,然后通过红外热像仪对被测件在脉冲波激励下产生的局部发热过程进行采集,从而判别被测件中缺陷的有无及其位置。简要介绍了国外超声红外热成像无损评估在金属材料、复合材料和陶瓷材料中疲劳裂纹、分层、脱粘等损伤检测方面的应用情况。  相似文献   

3.
利用超音速火焰喷涂技术在Ni718合金表面制备WC-17Co涂层,对喷涂后的试样进行150℃? h 和300℃? h 保温热处理,利用Almen试片曲率法计算不同热处理条件下涂层中的残余应力,利用反复弯曲试验测试试样的疲劳寿命,分析残余应力对试样疲劳寿命的影响。结果表明在疲劳循环过程中,裂纹在涂层中萌生并向涂层/基体界面处扩展,最后扩展至基体内部形成最终断裂。涂层中的残余压应力能够抑制疲劳裂纹的产生和扩展。当经过保温处理后涂层中的残余压应力降低,导致试样的疲劳寿命随热处理的温度上升而下降。  相似文献   

4.
利用超音速火焰喷涂技术在Ni718合金表面制备WC-17C0涂层,对喷涂后的试样进行150℃,3 h和300℃,3 h保温热处理,利用Almen试片曲率法计算不同热处理条件下涂层中的残余应力,用反复弯曲试验测试试样的疲劳寿命,分析残余应力对试样疲劳寿命的影响。结果表明,在疲劳循环过程中,裂纹在涂层中萌生并向涂层/基体界面处扩展,最后扩展至基体内部形成最终断裂。涂层中的残余压应力能够抑制疲劳裂纹的产生和扩展。经过保温处理后涂层中的残余压应力降低,导致试样的疲劳寿命随热处理的温度上升而下降。  相似文献   

5.
杨小林  吕伯平 《无损检测》2007,29(5):275-277
简要介绍了超声热成像检测方法的基本原理和特点。该方法利用激励超声波在缺陷处产生机械振动,使缺陷处因热弹效应和滞后效应等原因释放出热量,用红外热像仪对此局部发热过程进行监测,最后对图像进行分析。由于激励信号的频率调制和特殊的图像处理方法,超声热成像检测法优势独特。对某航空碳纤维增强复合材料的检测表明,该方法能有效检测出裂纹、分层或破裂等缺陷,应用前景广阔。  相似文献   

6.
利用自蔓延高温合成结合准热等静压技术(SHS/PHIP),在H13钢表面制备了Ti C/Ni梯度功能涂层,采用自制热疲劳试验设备对涂层进行了600次热疲劳循环试验。采用SEM/EDS对涂层微观组织进行观察。结果表明,涂层裂纹萌生于表面层和中间层的孔洞尖端和缺陷处,25℃和100℃涂层的裂纹垂直于界面扩展到过渡层。25℃涂层在过渡层发生脱落,100℃涂层在过渡层呈龟裂状,200℃和300℃涂层裂纹垂直于界面扩展到基体表面终止。表面层和中间层裂纹扩展发生在Ti C晶粒内,属于典型脆性断裂特征的穿晶断裂。  相似文献   

7.
通过分析主动式红外热成像方法的检测原理,结合国外检测案例,确定了红外热成像方法对涂层质量检测的适用性.针对电弧喷涂涂层与基体分层缺陷,开展了涂层质量的红外热成像检测试验.结果表明,主动式红外热成像方法能够实现对涂层内部分层缺陷的准确、快速和非接触检测,利用热扩散曲线能够对分层程度进行有效区分.  相似文献   

8.
热障涂层作为燃气轮机高温部件的关键材料,其服役过程中的脱落与失效机理一直是研究的热点问题。研究了应变幅和相角度对含热障涂层的镍基高温合金热机械疲劳性能的影响。研究结果表明,在相同相角度下,热机械疲劳寿命随应变幅的增大而降低。固定应变幅,同相位下样品的热机械疲劳寿命要高于反相位样品。所有样品中,裂纹萌生于热生长氧化物层,在粘结层与陶瓷层界面扩展形成分层裂纹,分层裂纹与陶瓷层内贯穿裂纹连接起来导致大面积的陶瓷层剥落,从而导致TBC层失效。另外,分析了热障涂层中的应力分布,初步建立了含热障涂层的镍基高温合金热机械疲劳寿命模型,发现含热障涂层的镍基高温合金热机械疲劳寿命与涂层中的最大应力呈指数关系。  相似文献   

9.
激光重熔对Ni-WC涂层组织与开裂的影响   总被引:1,自引:0,他引:1  
利用火焰喷涂的方法在45钢基体上制备了Ni-WC涂层,并对涂层进行激光重熔处理。通过扫描电镜、能谱仪、XRD分析了其界面结合界面组织的生长形态、元素及残余应力分布特性。结果表明,经激光重熔后,涂层变得致密,且涂层与基体发生相互扩散;激光重熔后WC颗粒部分烧损,获得了WC颗粒均匀分布的涂层,实现了涂层与基体界面良好的冶金结合;火焰喷涂制备的涂层为拉应力,会导致微裂纹扩展,而激光重熔处理后的涂层则表现为压应力,使涂层表面裂纹产生闭合效应。  相似文献   

10.
利用ANSYS有限元法模拟了内表面有裂纹缺陷的聚乙烯管在施加热空气时的红外无损检测过程,从而确定了表面温度分布与裂纹缺陷大小和位置之间的关系。为了验证ANSYS模拟管道内表面裂纹缺陷结果的正确性,搭建了空气加热热激励方式的主动红外热成像试验平台。试验结果和模拟结果基本吻合,说明有限元数值计算方法可以作为研究红外热成像技术的一种手段,为聚乙烯管道内部缺陷的红外检测技术提供数值模型。  相似文献   

11.
采用常规超声检测方法对在役转轴表面疲劳裂纹检测的效果很差。针对此类在役转轴疲劳裂纹产生的机理,结合超声爬波传播的特性,选用超声爬波对在役转轴产生的表面疲劳裂纹进行检测。对某规格的阶梯转轴进行的检测结果表明,超声爬波检测方法简便可行,能够有效地检测出转轴在役运行状态中出现的疲劳裂纹,因此可用于在役转轴表面疲劳裂纹的日常检测。  相似文献   

12.
Abstract

The application of surface treatment methods like ion nitriding, physical vapour deposition (PVD) coatings and their combination in duplex treatments effectively reduces the occurrence of oxidation, corrosion, erosion and wear processes. However, it is still uncertain whether nitriding and duplex treatment have any real effect on the decrease in the nucleation and growth of thermal fatigue cracks on the surface. This paper presents the results of thermal fatigue investigations of a nitrided layer and different composite layers ‘nitrided layer/PVD coating’ (TiN, CrN and TiAlN) obtained on the EN X40CrMoV5·1 hot working steel. The ion nitrided only and three different duplex treated substrates were compared, based on the intensity of the thermal fatigue cracks observed after testing. The nitrided layer and composite layers investigated were obtained with the use of the hybrid surface treatment technology consisting of ion nitriding followed by arc evaporation coating deposition. Apparatus based on high frequency induction heating and water spray cooling was used for thermal fatigue tests under the following conditions: maximum temperature 600°C, minimum temperature 80°C and two different rates of thermal cycling: 500 and 1000. The thermal fatigue intensities of the nitrided layer and the three different composite layers were measured according to the surface crack density and crack length (i.e. penetration into the testpiece) after different numbers of thermal cycles. Finally, based on the results obtained, the influence of different PVD coatings in the composite layer on the increase in thermal fatigue resistance of hot working steel was discussed.  相似文献   

13.
It is widely recognized by the scientific community that thermal spray coatings exhibit anisotropic behaviour of mechanical properties, e.g., the elastic modulus values of the coating in-plane (i.e., parallel to the substrate surface) or through-thickness (i.e., perpendicular to the substrate surface) will tend to be significantly different due to their anisotropic microstructures. This work shows that thermally sprayed ceramic coatings may exhibit isotropic mechanical behaviour similar to that of bulk materials even when exhibiting the typical anisotropic coating microstructure. Elastic modulus values on the in-plane and through-thickness directions were measured via Knoop indention and laser-ultrasonic techniques on a coating produced via flame spray (FS) using a nanostructured titania (TiO2) powder. No significant differences were found between the coating directions. In addition, four major cracks with similar lengths were observed originating near or at the corners of Vickers indentation impressions on the coating cross-section (i.e., a typical characteristic of bulk ceramics), instead of two major cracks propagating parallel to the substrate surface, which is normally the case for these types of coatings. It was observed by scanning electron microscopy (SEM) that coatings tended to exhibit an isotropic behaviour when the average length of microcracks within the coating structure oriented perpendicular to the substrate surface was about twice that of the microcracks aligned parallel to the substrate surface. Modelling, based on scalar crack densities of horizontal and vertical cracks, was also used to estimate when thermal spray coatings tend to exhibit isotropic behaviour.  相似文献   

14.
In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.  相似文献   

15.
GJW35钢结硬质合金热疲劳裂纹扩展的观察   总被引:6,自引:2,他引:4  
尤显卿 《硬质合金》2000,7(2):92-95
观察了在热应力作用下 GJW35钢结硬质合金表面热疲劳裂纹扩展过程。结果表明 :萌生后的热疲劳裂纹优先在硬质相中扩展 ,遇到钢基体相后受阻、钝化。当裂纹在钢基体相中孕育时 ,另一裂纹已在该钢基体相区前沿的硬质相中形成。最后 ,在钢基体相中形成的裂纹以“搭桥”方式将其前后的裂纹连接起来。  相似文献   

16.
真空熔烧镍基合金—碳化铬复合涂层抗疲劳性能的研究   总被引:13,自引:0,他引:13  
研究了用真空熔烧法制得的镍基合金-碳化铬复合涂层的热疲劳行为。结果表明,复合涂层的热疲劳行为与热循环上限温度、涂层厚度有关。随涂层厚度减薄,热疲劳抗力增加,随热循环上限温度升高,其热疲劳抗力降低,裂纹扩展由快到慢,最后停止,热疲劳裂纹有沿相界面开裂的特征,复合涂层具有高的抗氧化性。  相似文献   

17.
A large number of fatigue experiments on standardized samples is required for the development of databases of the fatigue properties of specific material systems. To facilitate such studies, different visual monitoring methods for surface fatigue cracks have been used; however, the problem of monitoring internal fatigue crack initiating during cold dwell fatigue of Ti is much more complicated. This paper describes the development and integration of several nondestructive evaluation methods for monitoring and sizing microcracks in titanium fatigue samples. For in situ monitoring of crack initiation and evolution ultrasonic Lamb wave signals are excited and acquired in the sample continuously during fatigue tests at different levels of fatigue load using a high-speed data acquisition system. Localization of the secondary cracks is done by both the in situ ultrasonic method and an ultrasonic immersion scanning method here referred to as “vertical C-scan” (VC-scan). The VC-scan is developed for imaging small cracks aligned normal to the fatigue sample axis. Microradiography has been performed on fatigue samples to confirm the localization and sizing of the detected cracks with other ultrasonic NDE techniques. The fusion of data from different NDE techniques provides useful information on the initiation, location, shape, size and growth history of fatigue cracks.  相似文献   

18.
Thick (1.8 mm) thermal barrier coatings were air-plasma-sprayed onto two different substrate geometries, including small circular substrates and burner cans. Two different top-coating spray parameters were used, where the settings of the substrate temperature and the lamella thickness were varied. A segmentation crack network was found in the top coatings sprayed using a high substrate temperature and a high lamella thickness. The density of segmentation cracks was found to be independent of substrate geometry. No segmentation cracks were found in the top-coatings when a low substrate temperature and a low lamella thickness were used. In the segmented burner can, after 1000 thermal shock cycles, the segmentation crack network was still stable and no severe cracks had formed in the top coating. In the nonsegmented burner can, cracks were formed after only 35 thermal shock cycles. Among the crack types, horizontally oriented cracks were found in the top coating close to, and sometimes reaching, the bond coating. Cracks of this type are not tolerated in thermal barrier coatings because they can cause failure of the coating. Regarding the lifetime of the segmented burner can, it is believed the failure will be dependent on other mechanisms, such as bond-coating oxidation or top-coating decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号