首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have analysed the mitotic behaviour of expanded CTG repeats in somatic tissues and cultured somatic cells from myotonic dystrophy (DM) fetuses using indirect and direct methods. Heterogeneity of expansions between fetal tissues was demonstrated in a 16 week old fetus whereas there was no evidence for such a somatic heterogeneity in a 13 week old fetus. Dilution plating of cultured cells from an adult patient and a fetus resulted in isolation of clones showing single expanded restriction fragments when the donor showed a heterogeneous smear of expansions or a single expanded fragment. During proliferation in vitro to 45 doublings, DM cells experienced highly synchronous further repeat expansion which first became evident at approximately 15 cell generations and reached a plateau of maximum expansion at approximately 200 days. When mathematically expressed as a function of culture time the dynamics of expansion of restriction fragments followed a sigmoid curve. This unstable behaviour of CTG repeat expansions in DM was compared to the mitotically stable patterns of full mutation in fragile X fetal tissues and led to the hypothesis that methylation of CpGs within the repeat sequence is a stabilizing factor of largely expanded CGG and GCC repeats allowing for efficient methyl-directed strand-specific DNA mismatch repair.  相似文献   

2.
Trinucleotide microsatellites are widespread in the human and other mammalian genomes. Expansions of unstable trinucleotide repeats have been associated so far with a number of different genetic diseases including fragile X, myotonic dystrophy (DM) and Huntington disease. While ten possible trinucleotides can occur at the DNA level, only CTG and CCG repeats are involved in the disorders described so far. However, the repeat expansion detection (RED) technique has identified additional large repeats of ATG, CCT, CTT, and TGG of potentially pathological significance in the human genome. We now show that conclusive information about the chromosomal localization of long trinucleotide repeats can be achieved in a relatively short time using fluorescence in situ hybridization (FISH) with biotin-labelled trinucleotide polymers. Large CTG expansions (> 1 kb) in DM and an unstable (CTG)306 repeat in a patient with schizophrenia were detected by eye through the microscope without electronic enhancement. Digital imaging was used to analyse the chromosomal distribution of long CCA and AGG repeats. Our results suggest that long trinucleotide repeats occur in the normal human genome and that the size of individual repeat loci may be polymorphic.  相似文献   

3.
Myotonic dystrophy (DM) is associated with an expansion of an unstable (CTG)n repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19q13.3. We studied six patients from two families who showed no expansions of the repeat, in spite of their clinical diagnosis of DM. These patients had multi-systemic manifestations that were distinguishable from those seen in other myotonic disorders, including proximal myotonic myopathy (PROMM). In one additional family, two symptomatic members showed no expanded (CTG)n repeats, while their affected relatives had the expanded repeats. DM haplotype analysis failed to exclude the DMPK locus as a possible site of mutation in each family; however, DMPK mRNA levels were normal. We conclude that a mutation(s) other than the expanded (CTG)n repeat can cause the DM phenotype. The mutation(s) in these families remain(s) to be mapped and characterized.  相似文献   

4.
Clinical evidence for a dominant mode of inheritance and anticipation in periodic catatonia, a distinct subtype of schizophrenia, suggests that trinucleotide repeat expansions may be involved in the aetiology of this disorder. Since genes with triplet repeats are putative canditates for causing schizophrenia, we have analysed the polymorphic B33 CTG repeat locus on chromosome 3 in 45 patients with periodic catatonia and 43 control subjects. The B33 CTG repeat locus was highly polymorphic, but all alleles in both the patient and control groups had repeat lengths within the normal range. We conclude that susceptibility to periodic catatonia is not influenced by variation at the B33 CTG repeat locus. Nevertheless, that periodic catatonia displays dominant inheritance and anticipation, characteristic of genetic disorders involving trinucleotide repeats, justifies further screening for triplet repeat expansions in this illness.  相似文献   

5.
The CTG repeat number in the 3'-untranslated region of the myotonin protein kinase (MTPK) gene varies between 5 and 37 in normal individuals, whereas myotonic dystrophy (DM) patients have expansions from 50 to 3000 copies. However little is known about the molecular mechanisms or the genetic control of the expansion of triplet repeats. To explain the dynamic mutation mechanism and high prevalence in the population, slippage theory, multistep model and meiotic drive hypothesis have been proposed. Recent studies have shown that repeat expansion may affect neighboring genes (59 gene and DMAHP gene), or exert its effect at the RNA level by modulating the binding of (CUG)n-RNA binding proteins which are required for the maturation, stability and translation of specific mRNAs.  相似文献   

6.
OBJECTIVE: The purpose of this study was to identify the specific expanded CAG/CTG trinucleotide repeat associated with bipolar disorder. METHOD: The study employed an efficient multistage approach for using a genomic CAG/CTG screening set. RESULTS: The authors found no evidence of expanded repeats at 43 polymorphic autosomal loci and seven X chromosomal loci. Secondary screening was pursued at the only locus that contained a large allele (37 repeats) in the primary screening. No association was found between allele size and diagnostic status. CONCLUSIONS: It is highly unlikely that expansions in repeat size at any of the 50 candidate trinucleotide repeat loci examined are responsible for the association between expanded CAG/ CTG repeats and bipolar disorder. However, although the authors prioritized the repeats that were a priori most likely to be involved, the study does not reject the more general hypothesis that expanded CAG/CTG repeats are implicated in the pathogenesis of bipolar disorder.  相似文献   

7.
The obstetric histories of 26 women with myotonic dystrophy (DM), who had a total of 67 gestations, were reviewed retrospectively comparing gestations with affected (DM-fetuses) and unaffected fetuses (UA-fetuses). Second, the influence of gestation on the disease course and the personal attitude towards family planning in DM was assessed. Miscarriages and terminations occurred in 11 pregnancies. Of the 56 infants carried to term, 29 had or most likely had inherited the gene for DM from their affected mothers at the time of investigation; 18 (61%) in this series were affected by the congenital form of DM. Perinatal loss rate was 11% and associated with congenital DM. The rate of obstetric complications was significantly increased in all women. However, preterm labor was a major problem in gestations with DM-fetuses (55 vs. 20%), as was polyhydramnios (21% vs. none). While forceps deliveries or vacuum extractions were required in 21% of deliveries with DM-fetuses and only 5% of UA-fetuses, the frequency of Cesarean sections was similar in both groups (24 and 25%). Obstetric problems were inversely correlated with age at onset of maternal DM, while no effect of age at delivery or birth order on gestational outcome was seen. DNA analysis confirmed the diagnosis in 19 patients by the presence of enlarged CTG repeats (EcoRI-expansions) on chromosome 19. Of the 17 patients whose CTG repeat length was known, 59% were classified as E2 (corresponding to 500-1000 repeats), 24% as E1 (<500 repeats), while larger expansions (E3; 1000-1500 repeats, or E4; >1500 repeats) were seen in three patients (17%). Obstetric complications or congenitally affected children occurred in all maternal phenotypes and CTG repeat classes. Eight (31%) patients experienced a worsening of symptoms that was temporary, weight related in three cases, and persistent in five. With the exception of three patients, most new mothers were able to care for their families. To conclude, pregnant women with DM need constant obstetric monitoring and should be advised to deliver in centres with perinatal facilities.  相似文献   

8.
Expansions of trinucleotide repeats in DNA, a novel source of mutations associated with human disease, may arise by DNA replication slippage initiated by hairpin folding of primer or template strands containing such repeats. To evaluate the stability of single-strand folding by repeating triplets of DNA bases, thermal melting profiles of (CAG)10, (CTG)10, (GAC)10 and (GTC)10 strands are determined at low and physiological salt concentrations, and measurements of melting temperature and enthalpy change are made in each case. Comparisons are made to strands with three times as many repeats, (CAG)30 and (CTG)30. Evidence is presented for stable intrastrand folding by the CAG/CTG class of triplet repeats. Relative to the GAC/GTC class not associated with disease, the order of folding stability is found to be CTG > GAC approximately = CAG > GTC for 10 repeats. Surprisingly, the folds formed by 30 repeats of CTG or CAG have no higher melting temperature and are only 40% more stable in free energy than those formed by 10 repeats. This finding suggests that triplet expansions with higher repeat number may result from the formation of more folded structures with similar stability rather than fewer but longer folds of greater stability.  相似文献   

9.
Myotonic dystrophy is characterised by the striking level of somatic heterogeneity seen between and within tissues of the same patient, which probably accounts for a significant proportion of the pleiotropy associated with this disorder. The congenital form of the disease is associated with the largest (CTG)n repeat expansions. We have investigated the timing of instability of myotonic dystrophy (CTG)n repeats in a series of congenitally affected fetuses and neonates. We find that during the first trimester the repeat is apparently stable and that instability only becomes detectable during the second and third trimesters. In our series repeat instability is apparent only after 13 weeks gestational age and before 16 weeks. The appearance of heterogeneity shows some tissue specificity, with heart most commonly having the largest expansion. The degree of heterogeneity is not correlated with initial expansion size as gauged by chorionic villus and blood (CTG)n repeat sizes.  相似文献   

10.
Genetic instability investigations on three triplet repeat sequences (TRS) involved in human hereditary neurological diseases (CTG.CAG, CGG.CCG, and GAA.TTC) revealed a high frequency of small expansions or deletions in 3-base pair registers in Escherichia coli. The presence of G to A polymorphisms in the CTG.CAG sequences served as reporters for the size and location of these instabilities. For the other two repeat sequences, length determinations confirmed the conclusions found for CTG.CAG. These studies were conducted in strains deficient in methyl-directed mismatch repair or nucleotide excision repair in order to investigate the involvement of these postreplicative processes in the genetic instabilities of these TRS. The observation that small and large instabilities for (CTG.CAG)175 fall into distinct size classes (1-8 repeats and approximate multiples of 41 repeats, respectively) leads to the conclusion that more than one DNA instability process is involved. The slippage of the complementary strands of the TRS is probably responsible for the small deletions and expansions in methyl-directed mismatch repair-deficient and nucleotide excision repair-deficient cells. A model is proposed to explain the observed instabilities via strand misalignment, incision, or excision, followed by DNA synthesis and ligation. This slippage-repair mechanism may be responsible for the small expansions in type 1 hereditary neurological diseases involving polyglutamine expansions. Furthermore, these observations may relate to the high frequency of small deletions versus a lower frequency of large instabilities observed in lymphoblastoid cells from myotonic dystrophy patients.  相似文献   

11.
We studied the relationship between muscle pathology and the number of trinucleotide (CTG) repeats observed in lymphocytes and biopsied muscle tissues from patients with dystrophia myotonica (DM). The diameter of type 1 muscle fibers was smaller than that of type 2 fibers in all patients. The diameter and proportion of each muscle fiber type were related to the patient's age, but not to the number of trinucleotide (CTG) repeats of DM kinase in biopsied muscles. On the other hand, the proportion of type 1 fibers with central nuclei was closely related to the number of trinucleotide (CTG) repeats in muscles. These findings suggest that DM kinase abnormalities influence the muscle nuclei, and increase the number of central nuclei.  相似文献   

12.
Myotonic dystrophy (MD) is an autosomal dominant systemic disorder with an unstable expansion of the CTG triplet repeat in the 3'-untranslated region of the gene encoding myotonine protein kinase (DMPK) which maps to chromosome 19q13.3. Somatic mosaicism of CTG repeats in MD has been reported; and it has been observed that CTG repeats in tumor tissues associated with MD are more expanded than the other tissues. It is not rare that parotid tumors are found in patients with MD. We performed Southern blot analysis for tissues from the parotid tumor, the normal parotid gland, the skeletal muscles, and the leukocyte from a 60-year-old patient with MD. CTG repeat was most expanded in the parotid tumor, and the normal parotid gland had longer expansion of CTG repeat than the skeletal muscles. The leukocyte had the shortest expansion of CTG repeat. The expansion of CTG repeat in the parotid tumor may be related to active cell division and may underlie the occurrence of tumors in MD.  相似文献   

13.
Myotonic dystrophy (DM) is caused by an expansion of a CTG repeat sequence in the 3' noncoding region of a protein kinase gene (DMPK) at 19q13.3. We used in situ hybridization to analyse the replication timing of the genomic region containing DMPK in fibroblasts and myoblasts from controls and myotonic dystrophy patients. In this method the relative proportion of singlet to doublet hybridization signals is used to infer the relative time of replication of specific loci or regions. Our results show that in cells from normal individuals approximately 65% of signals appear as doublets, indicating early replication. In DM patients with a number of CTG repeats ranging from about 600-1800 we observed a significant increase of singlet-doublets compared to the background level. These results suggest the existence of replication alternations and/or structural differences between the normal and mutant alleles induced by the presence of the DM mutation.  相似文献   

14.
Nucleosome assembly on CTG triplet repeats   总被引:1,自引:0,他引:1  
Expansion of CTG repeat sequences is associated with several human genetic diseases. We have examined the consequences of CTG repeat expansion for nucleosome assembly and positioning. Short CTG repeats are found within the most favored DNA sequences yet defined for nucleosome assembly. We find that as few as six CTG repeats will facilitate nucleosome assembly to a similar extent as the 50 or more repeats found in disease genes. Thus an increase in nucleosome stability on expansion of existing triplet repeats is unlikely to explain the acquisition of the disease phenotype. However, the CTG repeat sequence is efficiently wrapped around the histone octamer, preferring to associate with histones at the nucleosomal dyad. Thus short segments CTG repeat sequence will facilitate the assembly of a stable positioned nucleosome which might contribute to the expansion phenomenon and the functional organization of chromatin.  相似文献   

15.
Myotonic dystrophy (DM) is a highly variable multisystemic disease belonging to the rather special class of trinucleotide expansion disorders. DM results from dynamic expansion of a perfect (CTG)n repeat situated in a gene-dense region on chromosome 19q. Based on findings in patient materials or cellular and animal models, many mechanisms for the causes and consequences of repeat expansion have been proposed; however, none of them has enjoyed prolonged support. There is now circumstantial evidence that long (CTG)n repeats may affect the expression of any of at least three genes, myotonic dystrophy protein kinase (DMPK), DMR-N9 (gene 59), and a DM-associated homeodomain protein (DMAHP). Furthermore, the new findings suggest that DM is not a simple gene-dosage or gain-or-loss-of-function disorder but that entirely new pathological pathways at the DNA, RNA, or protein level may play a role in its manifestation.  相似文献   

16.
BACKGROUND: Family studies of schizophrenia and bipolar affective disorder provide evidence for genetic anticipation, which (in common with a number of mendelian disorders), may be caused by triplet repeat expansion. This hypothesis is strengthened by evidence from repeat expansion detection (RED) analysis revealing association between the psychoses and long CAG/CTG trinucleotide repeats. METHODS: We performed RED on Han Chinese subjects with schizophrenia (82), bipolar affective disorder (43), and normal controls (61), using a CTG10 oligonucleotide. RESULTS: Comparison between cases and controls revealed no significant association between long repeats and affected status. We also found no detectable association with age at onset and repeat length in either bipolar affective disorder or schizophrenia. Overall, the size distribution of CAG/CTG repeats in Chinese subjects was not significantly different from those reported previously for Caucasian subjects. CONCLUSIONS: These findings indicate that CAG/CTG repeat expansion is not likely to be a major etiological factor for psychosis in Chinese populations.  相似文献   

17.
Evidence for genetic anticipation has recently become an important subject of research in clinical psychiatric genetics. Renewed interest in anticipation was evoked by molecular genetic findings of a novel type of mutation termed "unstable DNA." The unstable DNA model can be construed as the "best fit" for schizophrenia twin and family epidemiological data. We have performed a large-scale Southern blot hybridization, asymmetrical PCR-based, and repeat expansion-detection screening for (CAG)n/(CTG)n and (CCG)n/(CGG)n expansions in eastern Canadian schizophrenia multiplex families demonstrating genetic anticipation. There were no differences in (CAG)n/(CTG)n and (CCG)n/(CGG)n pattern distribution either between affected and unaffected individuals or across generations. Our findings do not support the hypothesis that large (CAG)n/(CTG)n or (CCG)n/(CGG)n expansions are the major etiologic factor in schizophrenia. A separate set of experiments directed to the analysis of small (30-130 trinucleotides), Huntington disease-type expansions in individual genes is required in order to fully exclude the presence of (CAG)n/(CTG)n- or (CCG)n/(CGG)n-type unstable mutation.  相似文献   

18.
19.
Recently an unstable trinucleotide CTG repeat, located within the 3' untranslated region of a gene on 19q13.3 was discovered in kindreds with myotonic dystrophy (DM). The age-of-onset/severity of DM shows a good correlation with CTG repeat size, and pedigrees and data reported to date have shown a striking trend toward amplification of the size of the CTG repeat during transmission from parent to child. The amplification has been accepted as the biological explanation for anticipation in the clinical severity observed in many families with DM. In this paper we report on 3 families where CTG amplification decreased during transmission from parent to child. In one case there was a gene conversion event, while in the remaining 2 there was a simpler reduction in the size of the repeat length. The changes appear to have been accompanied by a reduction in clinical severity in the child when compared to the parent. These observations are discussed in terms of their clinical implications and the biases that may exist in much of the reported data.  相似文献   

20.
Expansion of DNA trinucleotide repeats (TNRs) is the causative mutation in a growing number of human genetic diseases. Large expansions of a CTG tract were obtained and shown by genetic and physical assays to be length-dependent sites of chromosome breakage in Saccharomyces cerevisiae. Deletion of RAD27, which encodes a nuclease involved in Okazaki fragment processing, caused length-dependent destabilization of CTG tracts and a substantial increase in expansion frequency. The genetic assay described here can be used to evaluate other factors that induce TNR expansion or chromosome fragility in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号