首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
         下载免费PDF全文
Terahertz (THz) radiation can be generated due to the instability of THz plasma waves in field-effect transistors (FETs). In this work, we discuss the instability of THz plasma waves in the channel of FETs with spin and quantum effects under non-ideal boundary conditions. We obtain a linear dispersion relation by using the hydrodynamic equation, Maxwell equation and spin equation. The influence of source capacitance, drain capacitance, spin effects, quantum effects and channel width on the instability of THz plasma waves under the non-ideal boundary conditions is investigated in great detail. The results of numerical simulation show that the THz plasma wave is unstable when the drain capacitance is smaller than the source capacitance; the oscillation frequency with asymmetric boundary conditions is smaller than that under non-ideal boundary conditions; the instability gain of THz plasma waves becomes lower under non-ideal boundary conditions. This finding provides a new idea for finding efficient THz radiation sources and opens up a new mechanism for the development of THz technology.  相似文献   

3.
In this study, by adopting the ion sphere model, the self-consistent field method is used with the Poisson-Boltzmann equation and the Dirac equation to calculate the ground-state energies of H-like Ti at a plasma electron density from 10^22 cm^-3 to 10^24 cm^-3 and the electron temperature from 100 eV to 3600 eV. The ground-state energy shifts of H-like Ti show different trends with the electron density and the electron temperature. It is shown that the energy shifts increase with the increase in the electron density and decrease with the increase in the electron temperature. The energy shifts are sensitive to the electron density, but only sensitive to the low electron temperature. In addition, an accurately fitting formula is obtained to fast estimate the ground-state energies of H-like Ti. Such fitted formula can also be used to estimate the critical electron density of pressure ionization for the ground state of H-like Ti.  相似文献   

4.
         下载免费PDF全文
This paper presents the results of a theoretical and experimental study of the use of a pulsed discharge in water to obtain a strong acoustic wave in a liquid medium. A discharge with a current amplitude of 10 kA, a duration of 400 ns, and an amplitude pulsed power of 280 MW in water at atmospheric pressure created an expanding acoustic wave with an amplitude of more than 100 MPa. To describe the formation of the discharge channel, an isothermal plasma model has been developed, which made it possible to calculate both the expansion dynamics of a high-current channel and the strong acoustic wave generated by it. Our calculations show that the number density of plasma in the channel reaches 1020 cm–3, while the degree of water vapor ionization is about 10%, and the channel wall extends with a velocity of 500 m s−1. The calculations for the acoustic wave are in good agreement with measurements.  相似文献   

5.
    
The dense Z-pinch (DZP) is one of the earliest and simplest plasma heating and confinement schemes. Recent experimental advances based on plasma initiation from hair-like (10s m in radius) solid hydrogen filaments have so far not encountered the usually devastating MHD instabilities that plagued early DZP experimenters. These encouraging results along with the debut of a number of proof-of principle, high-current (1–2 MA in 10–100 ns) experiments have prompted consideration of the DZP as a pulsed source of DT fusion neutrons of sufficient strength (SN 1019 n/s) to provide uncollided neutron fluxes in excess ofIw= 5–10 MW/m2 over test volumes of 10–30 liters or greater. While this neutron source would be pulsed (100s ns pulse widths, 10–100 Hz pulse rate), giving flux time compressions in the range 105–106, its simplicity, near-term feasibility, low cost, high-Q operation, and relevance to fusion systems thatmay provide a pulsed commercial end-product, e.g., inertial confinement or the DZP itself, together create the impetus for preliminary consideration as a neutron source for fusion nuclear technology and materials testings. The results of a preliminary parametric systems study (focusing primarily on physics issues), conceptual design, and cost vs. performance analyses are presented. The DZP promises an inexpensive and efficient means to provide pulsed DT neutrons at an average rate in excess of 1019 n/s, with neutron currents Iw10 MW/m2 over volumes Vexp 30 liter using single-pulse technologies that differ little from those being used in present-day experiments.Work supported by U.S. DOE.  相似文献   

6.
This paper describes some of the near-term practical applications of plasma science from the perspective of National Laboratories involved with fusion research for many years. The first half of the paper presents suggestions for maintaining a healthy national program in this area. The second part of the paper gives specific examples of near-term plasma applications research at our laboratories.  相似文献   

7.
Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets-driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven (Q 1). The experiment (PLX) described in this paper serves as Phase 1 of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using 12 plasma guns arranged in a circle, launching plasma jets toward the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg to 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.  相似文献   

8.
         下载免费PDF全文
Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to produce plasmas on aluminum-based alloy in single- and collinear double-pulse laser induced breakdown spectroscopy (LIBS). Time resolved technique was used for detecting emission sig- nal by spectrometer equipped with ICCD detector. The intensity calibration of spectral response was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron number density was investigated in single- and collinear double-pulse experiments. Based on the investigation of plasma parameters, the emission signal enhancement mechanism was discussed qualitatively.  相似文献   

9.
Fusion specific features like inherent plasma shutdown, low decay heat densities, cryogenic temperatures, and limited source terms were considered during the safety design process of ITER. Uncertainties in plasma disruptions motivates a robust design to cope with multiple failures of in-vessel cooling piping. A vacuum vessel pressure suppression system mitigates pressure transients and effectively captures mobilized radioactivity. In case of pump trips or ex-vessel coolant losses in the divertor the plasma needs to be actively terminated in a few seconds. Failure to do so might damage the divertor but radiological consequences will be minor due to the intact first confinement barrier. Tritium plant inventories are protected by several layers of confinement. Uncontrolled release of magnet energy will be prevented by design. Postulated damage from magnets to confinement barriers causes fluid ingress (air, water, helium) into the cryostat. The cold environment limits pressurization. Most tritium and dust is captured by condensation.  相似文献   

10.
         下载免费PDF全文
A model for the nonlinear properties of obliquely propagating electron acoustic solitary waves in a two-electron populated relativistically quantum magnetized plasma is presented. By using the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived and this equation gives the solitary wave solution. It is observed that the relativistic effects, the ratio of the cold to hot electron unperturbed number density and the magnetic field normalized by electron cyclotron frequency significantly influence the solitary structures.  相似文献   

11.
In a fusion reactor based on the magnetized target fusion approach, the permanent power supply has to deliver currents up to a few mega-amperes to the target dropped into the reaction chamber. All the structures situated around the target will be destroyed after every pulse and have to be replaced at a frequency of 1–10 Hz. In this paper, an approach based on the use of spherical blanket surrounding the target, and pulsed plasma electrodes connecting the target to the power supply, is discussed. A brief analysis of the processes associated with creation of plasma electrodes is presented.  相似文献   

12.
We use quantum electrodynamics particle-in-cell simulation to study the generation of dense electron–positron plasma and strong γ-ray bursts in counter-propagating laser beam interactions with two different solid targets, i.e. planar(type I) and convex(type II). We find that type II limits fast electron flow most effectively. while the photon density is increased by about an order of magnitude and energy by approx. 10%–20% compared with those in type I target. γ-photon source with an ultrahigh peak brilliance of 2?×?1025 photons/s/mm2/mrad2/0.1% BW is generated by nonlinear Compton scattering process. Furthermore, use of type II target increases the positron density and energy by 3 times and 32% respectively, compared with those in type I target. In addition, the conversion efficiencies of total laser energy to γ-rays and positrons of type II are improved by 13.2% and 9.86% compared with type I. Such improvements in conversion efficiency and positron density are envisaged to have practical applications in experimental field.  相似文献   

13.
    
Plasma ignition threshold of nanoparticle-based and bulk silver targets was measured in air. The plasma was initiated by a Nd:YAG laser at wavelengths of 355, 532, and 1064 nm. The plasma ignition was monitored utilizing the prominent Ag I line at 546.5 nm. Lower ignition thresholds of the nanoparticle-based silver target were estimated at 0.4?±?0.02, 0.34?±?0.04, and 0.27?±?0.035 J cm~(-2) coupled with the different laser wavelengths, respectively. In contrast, the bulk silver target plasma exhibited an order of magnitude higher ignition threshold. A three orders of magnitude enhanced emission intensity from the nano-based target over the bulk target was achieved at lower levels of laser irradiation. A reduction of the thermal diffusion length of the nanosilver was assumed in order to theoretically predict this reduction in the plasma threshold. In addition, the effect of self-reversal on the resonance lines was taken into consideration.  相似文献   

14.
聚变驱动次临界堆聚变堆芯参数设计与分析   总被引:7,自引:5,他引:2  
在建立零维堆芯物理模型的基础上,计算了FDS系统三组环径比(低、标准、高)的堆芯物理参数,利用平衡程序和1.5维演化程序对标准环径比情况,进行了等离子体平衡计算和位形演化模拟,结果表明设计方案先进可行。  相似文献   

15.
         下载免费PDF全文
Only a small amount of spectral information is collected because the collection solid angle of the optical fiber probe and lens is very limited when collecting spectral information. To overcome this limitation, this study presents a novel method for acquiring plasma spectral information from various spatial directions. A parabolic-shaped plasma spectral collection device (PSCD) is employed to effectively collect more spectral information into the spectrometer, thereby enhancing the overall spectral intensity. The research objects in this study were soil samples containing different concentrations of heavy metals Pb, Cr, and Cd. The results indicate that the PSCD significantly enhances the spectral signal, with an enhancement rate of up to 45%. Moreover, the signal-to-noise ratio also increases by as much as 36%. Simultaneously, when compared to the absence of a device, it is found that there is no significant variation in plasma temperature when the PSCD is utilized. This observation eliminates the impact of the spatial effect caused by the PSCD on the spectral intensity. Consequently, a concentration-spectral intensity relationship curve is established under the PSCD. The results revealed that the linear fitting R2 for Pb, Cr, and Cd increased by 0.011, 0.001, and 0.054, respectively. Additionally, the limit of detection (LOD) decreased by 0.361 ppm, 0.901 ppm, and 0.602 ppm, respectively. These findings indicate that the spectral enhancement rate elevates with the increase in heavy metal concentration. Hence, the PSCD can effectively enhance the spectral intensity and reduce the detection limit of heavy metals in soil.  相似文献   

16.
         下载免费PDF全文
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency (RF) discharges is investigated by a two-dimensional (2D) particle-in-cell/Monte-Carlo collision (PIC/MCC) model. Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed, which is an essential condition for the plasma density enhancement outside hollow electrodes. In addition, the existence of the electron density peak at the orifice is generated via the hollow cathode effect (HCE), which plays an important role in the density enhancement. It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement, and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes. Higher electron density at the orifice, combined with larger radial plasma bulk width at the orifice, causes higher electron density outside hollow electrodes. The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes.  相似文献   

17.
         下载免费PDF全文
The plasma density enhancement outside hollow electrodes in capacitively coupled radio-frequency(RF)discharges is investigated by a two-dimensional(2D)particle-in-cell/Monte-Carlo collision(PIC/MCC)model.Results show that plasma exists inside the cavity when the sheath inside the hollow electrode hole is fully collapsed,which is an essential condition for the plasma density enhancement outside hollow electrodes.In addition,the existence of the electron density peak at the orifice is generated via the hollow cathode effect(HCE),which plays an important role in the density enhancement.It is also found that the radial width of bulk plasma at the orifice affects the magnitude of the density enhancement,and narrow radial plasma bulk width at the orifice is not beneficial to obtain high-density plasma outside hollow electrodes.Higher electron density at the orifice,combined with larger radial plasma bulk width at the orifice,causes higher electron density outside hollow electrodes.The results also imply that the HCE strength inside the cavity cannot be determined by the magnitude of the electron density outside hollow electrodes.  相似文献   

18.
         下载免费PDF全文
In this paper, Maxwell equations are coupled with a radially localized global model and an analytical sheath model to investigate the electromagnetic effects under various frequencies and electron powers in large-area very high frequency symmetric capacitive argon discharges.Simulation results indicate that both the vacuum wavelength and the sheath width decrease with frequency, leading to the reduced surface wavelength. As a result, the standing wave effect becomes pronounced, causing the fact that the radial profiles of the electron density, radio frequency voltage, and sheath width shift from uniform over center-high to multiple-node. When the frequency is close to or higher than the series resonance frequency, the surface waves cannot propagate to the radial center because of the significant radial damping. Due to the lack of power deposition near the radial center, the electron density is nearly zero there, i.e. the stop band effect. As power increases, the higher electron density leads to the decrease of the skin depth.Therefore, the importance of the skin effect gradually exceeds that of the standing wave effect,giving rise to the transition from the center-high to edge-high electron density profiles. The method proposed in this work could help to predict the plasma distribution under different discharge conditions in a few minutes, which is of significant importance in optimizing the plasma processing.  相似文献   

19.
    
This work is devoted to the study of plasma channel evolution characteristics in pulsed xenon flashlamps working in an array. Influencing factors on the plasma channel evolution process are studied, including pre-ionization pulse and neighbor flashlamps. It has been found that neighbor flashlamps affect the plasma channel by shaping the electric potential distribution, rather than by Lorentz force. Branching is observed in the plasma channels of the flashlamps in the middle of the array. Inconsistency also exists in the plasma channels of these flashlamps in different tests. The branching and inconsistency are both caused by the unique electric field distribution in these flashlamps. Besides, the pre-ionization pulse can help the main pulse plasma channel to develop more smoothly and faster, which will weaken the shock wave and benefit the mechanical strength of the flashlamp.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号