首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rationale behind mining frequent itemsets is that only itemsets with high frequency are of interest to users. However, the practical usefulness of frequent itemsets is limited by the significance of the discovered itemsets. A frequent itemset only reflects the statistical correlation between items, and it does not reflect the semantic significance of the items. In this paper, we propose a utility based itemset mining approach to overcome this limitation. The proposed approach permits users to quantify their preferences concerning the usefulness of itemsets using utility values. The usefulness of an itemset is characterized as a utility constraint. That is, an itemset is interesting to the user only if it satisfies a given utility constraint. We show that the pruning strategies used in previous itemset mining approaches cannot be applied to utility constraints. In response, we identify several mathematical properties of utility constraints. Then, two novel pruning strategies are designed. Two algorithms for utility based itemset mining are developed by incorporating these pruning strategies. The algorithms are evaluated by applying them to synthetic and real world databases. Experimental results show that the proposed algorithms are effective on the databases tested.  相似文献   

2.
Incorporating constraints into frequent itemset mining not only improves data mining efficiency, but also leads to concise and meaningful results. In this paper, a framework for closed constrained gradient itemset mining in retail databases is proposed by introducing the concept of gradient constraint into closed itemset mining. A tailored version of CLOSET+, LCLOSET, is first briefly introduced, which is designed for efficient closed itemset mining from sparse databases. Then, a newly proposed weaker but antimonotone measure, top-X average measure, is proposed and can be adopted to prune search space effectively. Experiments show that a combination of LCLOSET and the top-X average pruning provides an efficient approach to mining frequent closed gradient itemsets.  相似文献   

3.
On-shelf utility mining has recently received interest in the data mining field due to its practical considerations. On-shelf utility mining considers not only profits and quantities of items in transactions but also their on-shelf time periods in stores. Profit values of items in traditional on-shelf utility mining are considered as being positive. However, in real-world applications, items may be associated with negative profit values. This paper proposes an efficient three-scan mining approach to efficiently find high on-shelf utility itemsets with negative profit values from temporal databases. In particular, an effective itemset generation method is developed to avoid generating a large number of redundant candidates and to effectively reduce the number of data scans in mining. Experimental results for several synthetic and real datasets show that the proposed approach has good performance in pruning effectiveness and execution efficiency.  相似文献   

4.
Recently, a utility-based mining approach has emerged as an alternative mechanism to frequency-based mining in an attempt to reflect not only the statistical correlation but also the semantic significance (e.g., price and quantity) of items. However, existing mining trajectories utilizing high-utility itemsets may not offer firms sufficient business insights unless they can precisely assess the value of association rules, which may vary substantially depending on many business parameters included in the assessment. In this study, we propose a utility-based association-rule mining method that valuates association rules by measuring their specific business benefits accruing to firms. Based on previous studies, three key elements (opportunity, effectiveness, and probability) are identified to define and operationalize a users’ preference as a utility function. To apply the utility-based mechanism to the processing of large transaction databases, we constructed functional algorithms, with heightened attention paid to their pruning strategies, and evaluated them based on real-world databases. Experimental results show that the proposed approach can provide users with greater business benefits than the high-utility itemset mining approach, suggesting several important strategic implications for both research and practice.  相似文献   

5.
High-utility itemset mining (HUIM) is a popular data mining task with applications in numerous domains. However, traditional HUIM algorithms often produce a very large set of high-utility itemsets (HUIs). As a result, analyzing HUIs can be very time consuming for users. Moreover, a large set of HUIs also makes HUIM algorithms less efficient in terms of execution time and memory consumption. To address this problem, closed high-utility itemsets (CHUIs), concise and lossless representations of all HUIs, were proposed recently. Although mining CHUIs is useful and desirable, it remains a computationally expensive task. This is because current algorithms often generate a huge number of candidate itemsets and are unable to prune the search space effectively. In this paper, we address these issues by proposing a novel algorithm called CLS-Miner. The proposed algorithm utilizes the utility-list structure to directly compute the utilities of itemsets without producing candidates. It also introduces three novel strategies to reduce the search space, namely chain-estimated utility co-occurrence pruning, lower branch pruning, and pruning by coverage. Moreover, an effective method for checking whether an itemset is a subset of another itemset is introduced to further reduce the time required for discovering CHUIs. To evaluate the performance of the proposed algorithm and its novel strategies, extensive experiments have been conducted on six benchmark datasets having various characteristics. Results show that the proposed strategies are highly efficient and effective, that the proposed CLS-Miner algorithmoutperforms the current state-ofthe- art CHUD and CHUI-Miner algorithms, and that CLSMiner scales linearly.  相似文献   

6.
The sheer size of all frequent itemsets is one challenging problem in data mining research. Based on both closed itemset and maximal itemset, meta itemset which is a new concise representation of frequent itemset is proposed. It is proved that both closed itemset and maximal itemset are special cases of meta itemset. The set of all closed itemsets and the set of all maximal itemsets form the upper bound and the lower bound of the set of all meta itemsets. Then, property and pruning strategies of meta itemset are discussed. Finally, an efficient algorithm for mining meta itemset is proposed. Experimental results show that the proposed algorithm is effective and efficient.  相似文献   

7.
This paper studies the problem of mining frequent itemsets along with their temporal patterns from large transaction sets. A model is proposed in which users define a large set of temporal patterns that are interesting or meaningful to them. A temporal pattern defines the set of time points where the user expects a discovered itemset to be frequent. The model is general in that (i) no constraints are placed on the interesting patterns given by the users, and (ii) two measures—inclusiveness and exclusiveness—are used to capture how well the temporal patterns match the time points given by the discovered itemsets. Intuitively, these measures indicate to what extent a discovered itemset is frequent at time points included in a temporal pattern p, but not at time points not in p. Using these two measures, one is able to model many temporal data mining problems appeared in the literature, as well as those that have not been studied. By exploiting the relationship within and between itemset space and pattern space simultaneously, a series of pruning techniques are developed to speed up the mining process. Experiments show that these pruning techniques allow one to obtain performance benefits up to 100 times over a direct extension of non-temporal data mining algorithms.  相似文献   

8.
张磊  李柳  杨海鹏  孙翔  程凡  孙晓燕  苏喻 《控制与决策》2023,38(10):2832-2840
频繁高效用项集挖掘是数据挖掘的一项重要任务,挖掘到的项集由支持度和效用这2个指标衡量.在一系列用于解决这类问题的方法中,进化多目标方法能够提供1组高质量解以满足不同用户的需求,避免传统算法中支持度和效用的阈值难以确定的问题.但是已有多目标算法多采用0-1编码,使得决策空间的维度与数据集中项数成正比,因此,面对高维数据集会出现维度灾难问题.鉴于此,设计一种项集归减策略,通过在进化过程中不断对不重要项进行归减以减小搜索空间.基于此策略,进而提出一种基于项集归减的高维频繁高效用项集挖掘多目标优化算法(IR-MOEA),并针对可能存在的归减过度或未归减到位的个体提出基于学习的种群修复策略用以调整进化方向.此外还提出一种基于项集适应度的初始化策略,使得算法在进化初期生成利于后期进化的稀疏解.多个数据集上的实验结果表明,所提出算法优于现有的多目标优化算法,特别是在高维数据集上.  相似文献   

9.
Abstract

To overcome the limitation of high-utility itemset mining, more compact, lossless, and concise representations of high utility itemsets (HUIs) have been proposed in previous works, such as closed HUIs (CHUIs) or maximal HUIs (MHUIs). Focusing into MHUI mining, in this article, we present efficient approaches to directly mine MHUIs from transactional databases without generating any candidates. The proposed algorithms, which all execute in one phase, utilize many efficient data structures and pruning techniques such as EUCP combined with EUCS, CUIP combined with FUCS, and the P-set structure to significantly reduce the search space and remove nonpromising itemsets, thus, increase the performance of the MHUI mining process. Furthermore, while previous works assumed that the unit profit of items is fixed, which is not practical in many real-world applications, our work resolved this issue by applying a new utility calculation into the mining process to reflect the true nature of real-world databases, thus, generating more accurate results.  相似文献   

10.
最大频繁项目集的快速更新   总被引:29,自引:0,他引:29  
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.为克服基于Apriori的最大频繁项目集挖掘算法存在的不足,DMFIA采用FP-tree存储结构及自顶向下的搜索策略,有效地提高了最大频繁项目集的挖掘效率.但对于频繁项目多而最大频繁项目集维数相对较小的情况,DMFIA要经过多层搜索且在每一层产生大量的候选项目集,因而影响算法的执行效率.为此,该文提出了DMFIA的改进算法IDMFIA(the Improved algorithm of DMFIA).IDMFIA采用自顶向下和自底向上双向搜索策略,可尽早修剪掉较短最大频繁项目集的超集和较长最大频繁项目集的子集.另外,该文还提出最大频繁项目集更新算法FUMFIA(Fast Updating Maximum Frequent Itemsets Algorithm),该算法充分利用已建立的FP-tree和已挖掘的最大频繁项目集,可对已挖掘的最大频繁项目集进行高效维护.实验结果表明,IDMFIA和FUMFIA可有效提高最大频繁项目集的挖掘和更新效率.  相似文献   

11.
效用(utility)可弥补支持度在表现语义重要性方面的不足。现有的几种基于效用的关联规则挖掘算法都采用了类似Apriori自底向上的搜索方法,不适合长模式的挖掘。提出了一种双向搜索高效用项集的模型及一种基于划分的inter-transaction算法。inter-transaction利用了长事务相交迅速变短的特性和新的减枝策略,能同时输出项集的效用与支持度。实验表明,该方法对蕴含长模式的高维数据库非常有效。  相似文献   

12.
High utility itemset mining considers the importance of items such as profit and item quantities in transactions. Recently, mining high utility itemsets has emerged as one of the most significant research issues due to a huge range of real world applications such as retail market data analysis and stock market prediction. Although many relevant algorithms have been proposed in recent years, they incur the problem of generating a large number of candidate itemsets, which degrade mining performance. In this paper, we propose an algorithm named MU-Growth (Maximum Utility Growth) with two techniques for pruning candidates effectively in mining process. Moreover, we suggest a tree structure, named MIQ-Tree (Maximum Item Quantity Tree), which captures database information with a single-pass. The proposed data structure is restructured for reducing overestimated utilities. Performance evaluation shows that MU-Growth not only decreases the number of candidates but also outperforms state-of-the-art tree-based algorithms with overestimated methods in terms of runtime with a similar memory usage.  相似文献   

13.
频繁项集挖掘的研究与进展   总被引:6,自引:0,他引:6  
挖掘频繁项集是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法的核心,所以提高频繁项集的生成效率一直是近几年数据挖掘领域研究的热点之一,研究人员从不同的角度对算法进行改进以提高算法的效率。该文从频繁项集生成过程中解空间的类型、搜索方法和剪枝策略、数据库的表示方法、数据压缩技术等几个方面对频繁项集挖掘的基本策略进行了研究,对完全频繁项集挖掘、频繁闭项集挖掘和最大频繁项集挖掘的典型算法特别是最新算法进行了介绍和评述,并分析了各种算法的性能特点,指出其适于哪种类型的数据集。最后,对频繁项集挖掘算法的发展方向进行了初步的探讨。  相似文献   

14.
频繁项集挖掘是数据挖掘中的一个经典的问题。然而,大部分算法需要扫描数据库多次,算法效率比较低。该文提出了一个效率比较好的挖掘频繁项集的新算法,在这个算法中,所有的事务都是以二进制的形式表示,所以挖掘极大频繁项集的任务就变成了从二进制集中发现频繁模式。而且,这种算法只需要扫描原始数据库一次。最后,利用试验来证明这种算法的效率和优势。  相似文献   

15.
High on-shelf utility itemset (HOU) mining is an emerging data mining task which consists of discovering sets of items generating a high profit in transaction databases. The task of HOU mining is more difficult than traditional high utility itemset (HUI) mining, because it also considers the shelf time of items, and items having negative unit profits. HOU mining can be used to discover more useful and interesting patterns in real-life applications than traditional HUI mining. Several algorithms have been proposed for this task. However, a major drawback of these algorithms is that it is difficult for users to find a suitable value for the minimum utility threshold parameter. If the threshold is set too high, not enough patterns are found. And if the threshold is set too low, too many patterns will be found and the algorithm may use an excessive amount of time and memory. To address this issue, we propose to address the problem of top-k on-shelf high utility itemset mining, where the user directly specifies k, the desired number of patterns to be output instead of specifying a minimum utility threshold value. An efficient algorithm named KOSHU (fast top-K on-shelf high utility itemset miner) is proposed to mine the top-k HOUs efficiently, while considering on-shelf time periods of items, and items having positive and/or negative unit profits. KOSHU introduces three novel strategies, named efficient estimated co-occurrence maximum period rate pruning, period utility pruning and concurrence existing of a pair 2-itemset pruning to reduce the search space. KOSHU also incorporates several novel optimizations and a faster method for constructing utility-lists. An extensive performance study on real-life and synthetic datasets shows that the proposed algorithm is efficient both in terms of runtime and memory consumption and has excellent scalability.  相似文献   

16.
快速挖掘全局最大频繁项目集   总被引:19,自引:1,他引:18  
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题.现行可用的最大频繁项目集挖掘算法大多基于单机环境,针对分布式环境下的全局最大频繁项目集挖掘尚不多见.若将基于单机环境的最大频繁项目集挖掘算法运用于分布式环境,或运用分布式环境下的全局频繁项目集挖掘算法来挖掘全局最大频繁项目集,均会产生大量的候选频繁项目集,且网络通信代价高.为此,提出了快速挖掘全局最大频繁项目集算法FMGMFI(fast mining global maximum frequent itemsets),该算法采用FP-tree存储结构,可方便地从各局部FP-tree的相关路径中得到项目集的频度,同时采用自顶向下和自底向上的双向搜索策略,可有效地降低网络通信代价.实验结果表明,FMGMF算法是有效、可行的.  相似文献   

17.
Nowadays, high volumes of massive data can be generated from various sources (e.g., sensor data from environmental surveillance). Many existing distributed frequent itemset mining algorithms do not allow users to express the itemsets to be mined according to their intention via the use of constraints. Consequently, these unconstrained mining algorithms can yield numerous itemsets that are not interesting to users. Moreover, due to inherited measurement inaccuracies and/or network latencies, the data are often riddled with uncertainty. These call for both constrained mining and uncertain data mining. In this journal article, we propose a data-intensive computer system for tree-based mining of frequent itemsets that satisfy user-defined constraints from a distributed environment such as a wireless sensor network of uncertain data.  相似文献   

18.
基于索引数组和复合频繁模式树的频繁闭项集挖掘算法   总被引:1,自引:0,他引:1  
频繁闭项集惟一确定频繁项集且规模小得多.CROP是一种基于复合频繁模式树的、频繁闭项集高效挖掘算法,但存在着候选结点过多的问题.这些非闭合结点的生成、检查和剪裁带来了大量不必要的操作.提出了一种改进的频繁闭项集挖掘算法CROP_Index.该算法用"索引数组"来组织数据,找到频繁共同出现的项集.基于二进制位图,给出了一个包含索引的计算方法,并利用索引启发信息合并,得到复合型频繁模式树的初始结点;同时给出一些新的性质,使得改进的算法只生成闭合结点,从而节省了大量不必要的操作,缩小了搜索空间.实验结果表明该算法效率较高.  相似文献   

19.

High-utility itemset mining is a prominent data-mining technique where the profit or weight of itemsets plays a crucial role in defining meaningful patterns. High average-utility itemset (HAUI) mining is an advancement over high-utility itemset mining, which introduces an unbiased measure called average utility to associate the utility of itemsets with their length. Several existing HAUI mining algorithms use various upper bounds such as average-utility upper bound, revised tighter upper bound, and looser upper bound to preserve pruning methods. However, these upper bounds overestimate the average-utility of itemsets and slow down the mining process. This paper presents a fast high average-utility itemset miner (FHAIM) algorithm, which uses two improved upper bounds and several efficient pruning strategies to avoid the processing of unpromising candidate itemsets. Moreover, a novel list structure named recommended average-utility list (RAUL) is presented to store the average-utility and the required information for pruning. The RAUL for an itemset can be constructed by joining the RAULs of its subsets to avoid excessive database scans. We have performed substantial experiments on various benchmark datasets to evaluate the performance of the FHAIM in comparison with two existing HAUI mining algorithms. Experimental results show that FHAIM outperforms the existing HAUI mining algorithms in terms of runtime, memory usage, join counts, and scalability.

  相似文献   

20.
基于频繁模式树的约束最大频繁项集挖掘算法   总被引:1,自引:0,他引:1       下载免费PDF全文
多数最大频繁项集挖掘算法产生候选项目集的代价很高,而实际应用中用户只关心部分关联规则。针对该问题,提出一种基于频繁模式树的约束最大频繁项集快速挖掘算法。该算法能随时删除不满足约束条件的项集,无需生成候选项目集,由此提高挖掘效率。实验结果证明,该算法的效率优于同类算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号