首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 78 毫秒
1.
A synthetic protocol for the preparation of 162‐residue S‐monoglycosylated GM2‐activator protein (GM2AP) analogues bearing various amino acid substitutions for Thr69 has been developed. The facile incorporation of the replacements into the protein was achieved by means of a one‐pot/N‐to‐C‐directed sequential ligation strategy using readily accessible middle N‐sulfanylethylanilide (SEAlide) peptides each consisting of seven amino acid residues. A kinetically controlled ligation protocol was successfully applied to the assembly of three peptide segments covering the GM2AP. The native chemical ligation (NCL) reactivities of the SEAlide peptides can be tuned by the presence or absence of phosphate salts. Furthermore, NCL of the alkyl thioester fragment [GM2AP (1–31)] with the N‐terminal cysteinyl prolyl thioester [GM2AP (32–67)] proceeded smoothly to yield the 67‐residue prolyl thioester, with the prolyl thioester moiety remaining intact. This newly developed strategy enabled the facile synthesis of GM2AP analogues. Thus, we refer to this synthetic protocol as “tailored synthesis” for the construction of a GM2AP library.  相似文献   

2.
3.
4.
The cover picture shows how a combination of recombinant synthesis and chemical synthesis has been used to obtain chemically modified proteins. N‐terminal protein segments of pro‐neuropeptide Y (proNPY) were produced as intein‐fusion proteins in Escherischia coli in order to obtain thioesters. C‐terminal segments were synthesized by parallel automated peptide synthesis and derivatized to obtain carboxyfluorescein‐ (CF) and biotin‐labeled peptides. Native chemical ligation yielded chemically modified full‐length analogues of proNPY that can be used to monitor the biosynthesis of neuropeptide Y. Futher information can be found in the article by Beck‐Sickinger and co‐workers on p. 425 ff.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号