首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
本文以庞庞塔9-301综放工作面合理的区段煤柱宽度留设为背景,通过理论计算和Flac3D软件建立模型研究9-301工作面回采时不同区段煤柱宽度下煤柱的应力分布及塑形区情况,确定9-301综放工作的区段煤柱宽度为15m。现场9-301工作面的下顺槽内布置的钻孔应力计测点数据显示,在留设15m宽煤柱的情况下,9-301综放工作面回采过程中巷道变形在可允许范围内,能够保证该综放面的安全回采。  相似文献   

2.
《煤》2021,30(7)
以马军峪煤矿90109综放工作面合理的区段煤柱宽度留设为背景,通过理论计算和Flac~(3D)软件建立模型研究马军峪煤矿90109综放工作面回采时不同区段煤柱宽度下煤柱的应力分布,确定马军峪煤矿90109综放工作面的区段煤柱宽度为20 m。对留设的煤柱进行钻孔应力监测,通过对现场监测数据分析可知,在留设20 m宽煤柱的情况下,90109综放工作面回采过程中巷道变形在可允许范围内,能够保证该综放面的安全回采。  相似文献   

3.
本文以金达煤业10102综放工作面合理的区段煤柱宽度留设为背景,通过理论计算和Fl AC3D软件建立模型,研究在10402工作面回风顺槽留设不同区段煤柱宽度下煤柱的应力分布及塑形区情况,综合理论技术和数值模拟结果,最终确定综放工作面的区段煤柱宽度为6.5 m。现场10402工作面的顺槽内布置的多点位移计数据显示,在留设6.5 m宽煤柱的情况下,10402综放工作面回采过程中巷道变形在可允许范围内,能够保证该综放面的安全回采。  相似文献   

4.
王正帅  刘军 《中州煤炭》2021,(11):294-298
为了研究大倾角煤层综采面回采对区段煤柱和下区段工作面回风巷掘进面的影响,采用数值模拟和现场监测的方法研究了区段煤柱的应力分布、回采面对掘进面的扰动情况。研究结果表明,大倾角煤层工作面应力集中区域与缓倾斜煤层明显不同,煤柱受到的工作面与煤柱侧叠加应力并非均匀分布,靠近上区段侧的应力集中明显高于下区段侧;当前南山煤矿B8煤层大倾角工作面20 m宽区段煤柱能够保持稳定,通过弹性核理论计算其合理区段煤柱宽度为18.4 m;回采工作面与相邻掘进工作面相距218 m时开始相互扰动,两面之间的最大扰动影响发生在回采面越过掘进面46 m时。  相似文献   

5.
特厚煤层综放工作面区段煤柱合理宽度研究   总被引:1,自引:0,他引:1  
针对塔山矿特厚煤层综放工作面与回采巷道对头施工过程中面临的区段煤柱合理宽度留设、回采动压影响范围确定等问题,采用理论分析、数值模拟及现场应力实测等手段对特厚煤层综放采场覆岩断裂结构、区段煤柱应力分布及区段煤柱合理宽度进行研究。采空区一侧煤体应力,应力剧烈影响范围30~35 m。煤柱应力现场实测表明,相邻工作面回采期间应力沿煤柱宽度大致呈单峰型、非对称分布,应力高峰区距8210回风巷21~30 m、距8208采空区8~17 m,采空区顶板运动稳定滞后距离120~130 m。结果表明,塔山矿特厚煤层综放面对头施工条件下留设38 m煤柱是安全的,从煤柱应力分布角度分析煤柱宽度可减小至30~32 m。  相似文献   

6.
根据金庄矿8203特厚煤层综放面实际,采用理论分析、数值模拟以及现场实测相结合的方法确定了区段煤柱合理宽度。理论研究了煤层厚度、应力集中系数、煤层强度对煤柱宽度的影响,确定区段煤柱宽度应大于23 m。采用FLAC3D模拟了煤柱宽度为16 m、20 m和24 m时,其两侧工作面开采过程中煤柱内塑性区和应力分布及变化规律,模拟结果表明煤柱宽度为16 m、20 m时,在两侧工作面回采的过程中,塑性区将会贯通煤柱;当煤柱宽度增加到24 m时,塑性区没有贯穿整个煤柱,煤柱内部存在8 m宽的弹性区。现场实测表明左侧工作面回采过程中煤柱破坏宽度为5 m左右,右侧工作面回采阶段煤柱破坏宽度为15 m,故首采工作面采用30 m宽的煤柱尺寸偏大,同理本研究也为后续工作面选择合理的区段煤柱尺寸提供了指导。  相似文献   

7.
《煤矿安全》2017,(1):40-43
针对王家岭煤矿20 m宽煤柱条件下回采巷道大变形控制难题,运用数值模拟方法,研究了顶板煤岩体偏应力第二不变量分布及迁移演化规律,得出203盘区相邻综放区段间煤柱合理宽度为4~8 m,且回采巷道煤柱侧顶板需要进行强化支护的结论。现场试验8 m宽煤柱,采用槽钢桁架锚索与单体锚索平行布置非对称支护技术支护20321综放工作面回风巷,顶板最大下沉量为102 mm,煤柱宽度留设合理。  相似文献   

8.
为研究强冲击倾向性特厚煤层综放工作面区段煤柱合理宽度,对华亭煤矿250102工作面频发的冲击地压现象进行分析,发现250102工作面20m区段煤柱内存在着极易诱发冲击地压的应力条件,具有典型的煤柱型冲击地压特征。采用数值模拟和理论计算的方法对2501采区工作面区段煤柱合理宽度进行模拟计算。研究表明:当煤柱宽度为5m时,应力集中系数最低,为1.14,冲击危险程度较低|当煤柱宽度为20m时,应力集中系数达到最高,为3.40,冲击危险程度达到最大|当煤柱宽度为25m以上时,应力曲线由单峰转化为双峰,煤柱由小煤柱的屈服阶段进入到大煤柱的承载阶段,冲击危险程度在不断降低|理论计算得出适合2501采区工作面区段煤柱宽度为5.64m,与数值模拟结果较为吻合。2501采区后续工作面均采用6m宽的区段煤柱,经实践验证,该宽度的区段煤柱对华亭煤矿冲击地压的防治效果较好。  相似文献   

9.
研究遗留条带煤柱下工作面合理区段煤柱宽度,对于增加回采巷道稳定性、减少资源浪费和实现工作面安全生产具有极为重要的意义。通过理论分析,研究了某矿条带煤柱的应力分布规律,确定了1310工作面区段煤柱宽度应小于7.07 m。通过数值模拟研究可知,当区段煤柱宽度为5 m时,区段煤柱及回采巷道承受的支承压力较小,区段煤柱虽发生塑性破坏,但还有承载能力。  相似文献   

10.
针对高强度开采综放工作面区段煤柱合理宽度留设问题,以羊场湾煤矿为工程背景,建立了综放工作面侧向基本顶破断结构模型,推导出低应力区范围表达式及其影响因素;采用FLAC3D数值模拟软件分析巷道掘进和本工作面回采期间不同煤柱宽度下巷道围岩应力与位移演化特征。研究表明:(1)高强度开采综放工作面因采场尺寸大、推进速度快、断裂步距大,导致内应力场范围亦大于常规工作面。(2)高强度开采综放工作面区段煤柱宽度的确定,应充分考虑多次剧烈采动、基本顶破断、巷道大断面等因素,结合试验工作面地质生产条件确定内应力场范围6.31~7.58 m,合理煤柱宽度为9~14 m。(3)本工作面回采期间,覆岩结构被再次激活,致使围岩变形破坏加剧,煤柱宽度10~14 m时,煤柱具有一定自稳能力并承担较少的顶板载荷,综合考虑各因素确定合理煤柱宽度为10 m。(4)受高强度开采及基本顶破断等因素影响,窄煤柱沿空巷道可能诱发大范围破碎、煤柱帮大变形及顶板不对称下沉等变形破坏,要实现此类巷道围岩稳定性控制应对煤柱帮和顶板重点加固,据此,提出了非对称围岩控制技术,并进行现场应用,巷道控制效果明显。  相似文献   

11.
为合理留设某矿综放工作面的区段煤柱,保证回采巷道稳定和提高煤炭资源采出率,采用理论计算、FLAC 3D数值模拟和现场实测等综合研究方法对综放工作面区段煤柱留设进行研究。通过沿空煤体力学状态分析,得出应力极限平衡区宽度为1.77 m,应力降低区位于距巷帮侧8 m范围内,应力峰值影响区位于距巷帮侧8~45 m内,原岩应力区位于距巷帮侧45 m以远;通过理论计算与FLAC 3D数值模拟对不同区段煤柱宽度(3、5、7、10、15、20 m)的应力场和位移场特征进行分析后,确定合理的区段煤柱宽度为5 m;通过现场实际监测对上述研究成果进行了验证。结果表明,当区段煤柱宽度为5 m时,可兼顾煤炭资源回收和巷道优化布置,该区段煤柱留设方法可为类似条件下的工程实践提供依据。  相似文献   

12.
《煤炭技术》2021,40(6):6-9
基于焦家寨煤矿511采区作为工程背景,采用理论分析、数值模拟方法研究了受大采高综放工作面采动影响时,不同宽度的区段煤柱围岩应力变化情况以及破坏范围,最终确定大采高综采放顶煤工作面较为合理的煤柱宽度。通过分析受回采工作面一次采动和二次采动的不同影响,得出以下结论:留设不同宽度煤柱所产生的塑性变形区域不同,焦家寨煤矿511采区109工作面的区段煤柱合理宽度为40 m,提高了巷道围岩的稳定性,减少了维护成本,保证了较高的煤炭资源回收率。  相似文献   

13.
为研究上覆不均布采空区下,具有冲击危险工作面区段煤柱布置问题,以某矿I010203工作面为工程背景,通过现场监测、数值模拟、理论分析等方法对工作面区段煤柱冲击危险和合理宽度进行研究。数值模拟和现场监测结果表明,I010203工作面回采过程中,15m宽区段煤柱微震事件频繁、能量剧烈释放,增大了工作面冲击危险;并且15m宽煤柱在工作面回采后不能完全破坏,仍可承受较高应力并向下部煤层传递,增大了下伏煤层回采工作面的冲击危险。数值研究表明,当宽度为0~6m时,煤柱破碎程度较高,不利于隔绝采空区及巷道稳定;当宽度大于10m时,煤柱内出现弹性核区,应力增加迅速,冲击危险性增高;8m宽煤柱是既能隔绝采空区预防瓦斯,又能使应力最低降低冲击危险的临界煤柱宽度,更合理的区段煤柱宽度为8m左右。研究结果可为该矿井接续工作面和相似条件工作面回采的煤柱宽度留设提供理论依据。  相似文献   

14.
为确定五阳煤矿"孤岛"综放工作面合理护巷煤柱宽度,控制回采巷道变形破坏,以7603工作面为工程背景,采用三维有限差分软件FLAC3D,对不同护巷煤柱宽度条件下的回采巷道围岩应力分布和塑性区发育特征进行了模拟分析,结果表明:该工作面合理的护巷煤柱宽度为22.5m。  相似文献   

15.
苏杰 《山东煤炭科技》2021,(4):73-75,78
以2-118C综采工作面合理的区段煤柱宽度留设为背景,通过理论计算和FLAC3D软件建立模型,研究工作面回采时不同区段煤柱宽度下煤柱的应力分布及塑性区情况,确定2-118C综采工作面的区段煤柱宽度为10 m。2-118C工作面下顺槽内布置的钻孔应力计测点数据显示,在留设10 m宽煤柱的情况下,2-118C综采工作面回采过程中巷道变形在可允许范围内。  相似文献   

16.
王家岭煤矿为保持回采巷道的稳定性、隔离上区段采空区瓦斯涌出,采用在每个工作面都设置20m的区段煤柱进行护巷的方法,存在着造成资源浪费较大、煤炭采出率较低以及造成工作面回采巷道矿压显现强烈等问题。为解决上述问题,基于王家岭煤矿20108工作面为实际生产地质条件,通过分析综放面侧向支承压力演化规律、井下实测煤柱应力、理论计算等方法确定窄煤柱的合理宽度为6.5m;并根据锚索网支护理论,对窄煤柱巷道进行非对称支护设计,结果表明,煤柱宽度为6.5m时煤柱能够保持稳定并且巷道的位移量较小,并且可以取得较好的经济效益,可以为相似矿井的研究提供依据。  相似文献   

17.
针对某矿9#煤特厚煤层9-704综放工作面动压巷道在本工作面回采过程中,出现变形量过大难以控制的问题,采用理论分析、数值模拟及现场变形实测等手段对特厚煤层综放工作面区段动压煤柱应力分布和动压巷道变形进行研究。极限平衡法表明在该条件下动压巷道护巷煤柱宽度不应小于24.5 m.数值分析表明,煤柱宽度大于26 m时能够较好地控制煤柱的应力及变形,最终确定该动压巷道护巷煤柱宽度为26 m.现场实测表明,动压巷道变形过大的原因在于护巷煤柱留设宽度过窄。动压巷道护巷煤柱宽度的计算必须考虑煤柱沿相邻工作面采空区方向及本工作面方向塑性区的宽度。该研究对类似条件下动压巷道护巷煤柱的留设宽度具有一定借鉴意义。  相似文献   

18.
斜沟煤业特厚煤层综放开采区段煤柱宽度为35m,为提高资源利用率欲对区段煤柱宽度进行优化,通过理论计算分析及数值模拟研究表明,23111工作面合理的区段煤柱宽度为8.6~44.4m,最为合理的区段煤柱宽度为15m,在实际生产中23111运输巷沿空掘巷煤柱宽度为15m,23111工作面回采期间对煤柱进行钻孔窥视,二次采动影响下,回采侧煤柱松动破坏的深度约为7.0m,煤柱完整性和承载能力较好,且巷道的变形量在安全可控的范围内,区段煤柱优化为15m取得了良好的应用效果和经济效益。  相似文献   

19.
为解决厚煤层综放工作面区段煤柱失稳破坏问题,保障采掘工作正常接续,以韩城矿区桑树坪二号井3304工作面区段煤柱为研究对象,建立力学模型求解确定塑性区宽度,采用FLAC3D数值模拟研究工作面侧向支承压力分布规律,综合分析不同宽度区段煤柱主应力差分布特征,据此针对性提出区段煤柱补强支护方案,并开展工业性试验,试验回采期间巷道围岩收敛量均处于允许范围内。研究结果表明:在工作面前方,现有宽度为10m的区段煤柱稳定性较好,煤体具有一定承载能力,但在工作面推采后,仍不可避免存在大范围片帮问题,根据煤柱帮变形破坏特征,在原有支护参数基础上,提出巷道煤柱帮锚索补强支护,可有效减少巷道两帮收敛变形,实现巷道围岩稳定性及次生灾害的综合控制。研究结果对类似开采条件下综放工作面区段煤柱稳定性控制具有一定参考价值。  相似文献   

20.
沈明柱  段宏飞 《煤矿安全》2014,(12):207-210
为了增强沿空掘巷巷道的稳定性,提高资源回采率,以大同矿区塔山煤矿8204工作面为研究背景,对沿空掘巷留设区段煤柱的合理宽度进行了研究。首先对特厚煤层综放工作面在沿空掘巷情况下区段煤柱的合理宽度进行了理论分析,然后采用FLAC3D数值模拟软件建立了采空区一侧不同宽度区段煤柱的力学模型,通过模拟结果表明:区段煤柱的宽度在5~10 m时,巷道处于低应力区,支护相对稳定。最后将理论计算和数值模拟相结合,同时参考塔山矿综放工作面矿压显现规律及微地震监测得出的相关结论,综合考虑巷道跨度大、隔绝采空区瓦斯等安全因素,确定了特厚煤层综放工作面沿空掘巷留设区段煤柱的合理宽度为8 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号