首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focuses on the characterization of the microstructures of an FeCrMoVC alloy in two states (an as-cast and a heat-treated state) as well as the compressive strain rate-dependent material and fracture toughness behavior. Both microstructures consist of martensite, retained austenite and complex carbides. Tempering results in a transformation of retained austenite into martensite, the precipitation of fine alloy carbides, and diffusion processes. High yield stresses, flow and ultimate compressive strength values at a relatively good deformability were measured. The yield and flow stresses at the onset of deformation are higher for the heat-treated state due to higher martensitic phase fractions and fine precipitations of alloy carbides respectively. Compressive deformation causes a strain-induced transformation of retained austenite to α′-martensite. Hence, both high-strength alloys are TRIP-assisted steels (TRansformation-Induced Plasticity). However, the martensitic transformation is more pronounced in the as-cast state due to higher phase fractions of retained austenite already in the initial state. Examinations of strained microstructures showed decreased crystallite sizes with increasing deformation. It is assumed that, during plastic deformation, the amount of low angle grain boundaries increases while the incremental formation of α′-martensite leads to decreased crystallite size. In general, lower microstrains were determined in the heat-treated state as a consequence of stress relaxation during tempering. In comparison to commercially available tool steels, the determined fracture toughness K Ic of both variants revealed relatively high fracture toughness values. It was found that the lower shelf of K Ic is already reached at room temperature. Higher loading rates $ \dot{K} $ resulted in lower dynamic fracture toughness K Id values. Notch fracture toughness K A measurements indicate that the critical notch tip radii of the examined materials are slightly smaller than 0.09?mm.  相似文献   

2.
杨智凯  柏鉴玲  张欣悦 《材料工程》2022,50(12):135-142
基于激光选区熔化(selective laser melting,SLM)技术,采用加热打印基板和低功率慢扫描的打印策略,制备了近全致密、低缺陷的高速钢样品;对比分析了固溶淬火及1~4次高温回火等热处理工艺对高速钢显微组织及力学性能的影响。结果表明:SLM极高的熔融/冷却速率产生了细晶奥氏体组织,解决了高速钢中常见的粗大莱氏体组织和网状碳化物问题。固溶淬火处理后高速钢组织由马氏体和残余奥氏体组成。随后在数次高温回火过程中,高速钢逐渐向回火马氏体转变,并析出大量微米级和纳米级MC型碳化物。在马氏体相变强化和MC型碳化物沉淀强化作用下,固溶淬火+3次回火的Tempered-Ⅲ样品硬度60HRC,抗弯强度3621 MPa,弯曲断裂应变为10.1%,获得硬度、强度和韧性匹配较佳的综合性能。继续增加回火次数则导致部分碳化物长大,使得高速钢弯曲断裂应变有所降低。通过SLM技术结合固溶淬火+高温回火,能够充分发挥细晶强化、相变强化和沉淀强化效果,为高强高韧复杂形状高速钢零件的快速制备提供了新途径。  相似文献   

3.
倪晋尚 《精密成形工程》2023,15(10):177-186
目的 针对汽车高强钢SG1000焊接接头恶化等问题,研究了SG1000激光复合焊接的力学性能。方法 选用等强匹配焊丝MG90-G对高强钢SG1000进行激光复合焊接,对焊接接头进行拉伸和低温冲击韧性试验,并结合扫描和硬度监测等手段对焊缝组织和断口形貌进行分析。结果 由于激光的预热作用,高强钢SG1000激光复合焊接成形件的焊缝美观,焊接过程稳定可靠,焊接熔池深度较大,有效改善了传统焊接的咬边、飞溅、气孔等缺陷。焊缝组织主要由板条马氏体和奥氏体晶粒组成,热影响区的过热区内部板条马氏体和奥氏体晶粒比较粗大,而焊接母材主要为细小的板条马氏体和奥氏体晶粒。焊接拉伸断口主要为细小且较浅的韧窝,且韧窝底部存在第二相粒子及夹杂物,焊接拉伸断口断裂于热影响区且微观形貌为韧性断裂;冲击微观形貌主要由准解理小平面及河流花样组成,且存在一定数量大小不一的韧窝交错分布,焊接冲击断口断裂于热影响区且微观形貌也为韧性断裂。结论 焊缝热影响区的晶粒比非热影响区的晶粒粗大,拉伸和冲击断裂均发生于热影响区;随着激光功率的增大,复合焊接接头的力学性能呈现逐渐增强的趋势;随着焊接速度的增大,复合焊接接头的力学性能呈现先增强后削弱的趋势。高强钢SG1000激光复合焊接最佳工艺参数如下:激光功率为9.5 kW,焊接速度为0.8 m/min,对应屈服强度为1 072 MPa,抗拉强度为1 175 MPa,断裂伸长率为13.5%,冲击断裂吸收的能量为30.8 J、焊缝中心显微硬度为342 HV。  相似文献   

4.
Multicomponent white cast irons contain many kinds of strong carbide-forming elements in order to obtain a very hard microstructure characterized by the presence of different carbides that are well dispersed in a martensitic matrix. The heat treatment of these products consists of high temperature austenization followed by quenching and two temperings, as required in order to increase their overall hardness and to completely eliminate residual austenite. The influence of tempering temperatures on the mechanical properties of these products, determined using tensile, hot compression and fracture toughness tests, was studied in this research work. Their corresponding failure micromechanisms were defined by means of the analysis of fracture surfaces.  相似文献   

5.
本研究采用真空热压烧结技术, 在1600℃下制备了WC-TiC-TaC硬质合金材料, 研究了TiC含量对其微观组织及力学性能的影响。结果表明, 随着TiC含量的增多, 硬质合金材料的晶粒显著增大。当TiC的含量从10wt% 增加到25wt%时, 硬质合金材料的硬度逐渐增大, 最高可达19.81 GPa, 这是由于TiC的硬度高于基体WC的硬度; 与此同时, 硬质合金材料的抗弯强度和断裂韧度逐渐减小。当TiC的含量为10wt%时, 材料的抗弯强度有最大值, 其值为1147.24 MPa, 这是由于在材料内部形成了均匀、细小的晶粒组织; 在此含量下, 复合材料的增韧机理为细晶增韧、裂纹偏转、裂纹分支、裂纹桥接和韧窝增韧, 其断裂韧度有最大值, 为14.60 MPa·m1/2。  相似文献   

6.
Q550 high strength steel was welded using gas shielded arc welding and three different welding wires without pre- or post-heat treatments. The paper investigates the influence of welding wire on the microstructure, tensile strength and impact toughness of Q550 steel weld joints. Results showed that the microstructure of the weld metal of joints produced using ER50-6 wire was a mixture of acicular ferrite and grain boundary ferrite including pro-eutectoid ferrite and ferrite side plate. Acicular ferrite was mainly obtained in the weld metal of the joints produced using MK·G60-1 wire. Pro-eutectoid ferrite was present along the boundary of prior austenite. Crack initiation occurred easily at pro-eutectoid ferrite when the joint was subjected to tensile. Tensile strength and impact toughness were promoted with increasing acicular ferrite. Tensile strength of the joint fabricated using MK·G60-1 wire was close to that of base metal. And tensile samples fractured at location of the fusion zone, which had lower toughness and thus became the weak region in the joint. Impact absorbing energy was the highest in the heat affected zone. Fibrous region in fracture surfaces of impact specimens was characterized as transgranular fracture with the mechanism of micro-void coalescence. Acicular ferrite microstructure region corresponded to relatively large dimples while boundary ferrite microstructure corresponded to small dimples.  相似文献   

7.
Abstract

The microstructure and mechanical properties of a medium carbon Cr–Ni–Mo–Nb steel in quenched and tempered conditions were investigated using transmission electron microscopy (TEM), X-ray analysis, and tensile and impact tests. Results showed that increasing austenitisation temperature gave rise to an increase in the tensile strength due to more complete dissolution of primary carbides during austenitisation at high temperatures. The austenite grains were fine when the austenitisation temperature was <1373 K owing to the pinning effect of undissolved Nb(C,N) particles. A tensile strength of 1600 MPa was kept at tempering temperatures up to 848 K, while the peak impact toughness was attained at 913 K tempering, as a result of the replacement of coarse Fe rich M3C carbides by fine Mo rich M2C carbides. Austenitisation at 1323 K followed by 913 K tempering could result in a combination of high strength and good toughness for the Cr–Ni–Mo–Nb steel.  相似文献   

8.
Abstract

In the present paper, the effects of the heat treatment processes with two conditioning treatments and four quenching–tempering processes on the mechanical properties of 2·25Cr–1Mo–0·25V high strength low alloyed (HSLA) steel are investigated. The results show that the conditioning treatments have obvious effects on the low temperature impact energy but little effect on the tensile strength. The elevation of the final austenitising temperature increases the strength, whereas it results in the decrease in the low temperature impact energy due to the coarse microstructure. The results of the fracture surfaces analysis further make sure that the fracture surfaces of tensile specimens all exhibit ductile characters with a lot of dimples. However, the fracture surfaces of impact specimens exhibit two typical fracture characters, i.e. the ductile and brittle fracture surface corresponding to the fine and coarse microstructures respectively. In addition, the elongation and reduction in area seem to be insensitive to the heat treatments. Meanwhile, the impact fracture mode is more sensitive to the grain size and not to the low temperature impact energy.  相似文献   

9.
The deformation characteristics of dual phase twinning-induced plasticity (TWIP) steel containing different ferrite volume fractions have been investigated through tensile testing method. The results show that the yield and ultimate tensile strengths are increased by ferrite volume fraction, while the ductility is marginally influenced. The former is attributed to the formation of DO3 ordered intermetallic compound inside the ferrite phase. Furthermore, the SEM examination of fracture surfaces reveals the pattern of brittle facets corresponding to the ferrite regions. These are surrounded by ductile dimples belonging to the austenite areas. Moreover, the signs of plane sliding in the austenite phase have been recognized, which demonstrates the domination of the ductile fracture in the austenite areas.  相似文献   

10.
The hydrogen-related fracture propagation process in martensitic steel was investigated through crystallographic orientation and fracture surface topography analyses. The hydrogen-related fracture surface consisted of three typical surfaces, namely smooth surfaces, surfaces with serrated markings, and surfaces with dimples. Crystallographic orientation analysis suggested that the smooth surface was generated by intergranular fracture at prior austenite grain boundaries, and the surface with serrated markings originated from quasi-cleavage fracture propagated along \(\{011\}\) planes. According to the reconstructed fracture propagation process by fracture surface topography analysis, the intergranular fracture at prior austenite grain boundaries initiated and propagated suddenly at the early stages of fracture. The quasi-cleavage fracture along \(\{011\}\) planes then gradually propagated within the prior austenite grains. At the final stages of fracture, ductile fracture accompanied by dimples occurred around the edge of the specimen. The results clearly indicated that the fracture propagation path changed with the proceeding fracture from the prior austenite grain boundaries to along \(\{011\}\) planes within the prior austenite grains.  相似文献   

11.
This work investigated the evolution of multiphase microstructure and impact fracture behavior of medium carbon high silicon high strength steel subjected to the austempering treatment at 240,360,and 400 ℃.The results show that martensite,bainite,and retained austenite (RA) are the main microstructural phases.The austempering treatments at 360 and 400 ℃ caused the formation of carbon-poor ferrite in the matrix,and the transformation of ultrafine bainite into coarse lath bainite and granular bainite,respectively.Thick filmy RA was distributed between bainite laths.The polygonal martensiteaustenite islands and blocky RA formed along the grain boundaries.The average carbon concentration in the matrix decreased with the temperature increase,while the impact toughness initially increased and then dropped with temperature.The quasi-cleavage brittle fracture dominated the impact fracture mechanism of the sample austempered at 240 ℃ by forming tearing surfaces and tearing steps.The microcracks disappeared in the RA on the prior austenite grain boundaries.On the other side,the fracture surface of the sample austempered at 360 ℃ exhibited ductile fracture with deep dimples and brittle fracture with cleavage river patterns.The polygonal martensite-austenite islands or blocky RA constrained the microcracks.After austempered at 400 ℃,the brittle fracture was dominant,showing river patterns,and the microcracks propagated through the granular bainite without any resistance.  相似文献   

12.
童邵辉  李东  邓增辉  方虎 《材料工程》2019,47(1):125-130
利用超景深显微镜和扫描电镜对电子束选区熔化快速成形的沉积态TC4试样组织与断口形貌进行观察和分析,研究不同几何成形和加载方向对断裂性能的影响。结果表明,断裂性能在垂直试样中受到柱状晶组织的影响,具有各向异性,在沉积方向上的断裂韧度为94.94MPa·m1/2,大于电子束扫描方向的断裂韧度85.33MPa·m1/2,而伸长率很小,仅为3%;α相形态对断裂性能有影响:水平试样片层状的α集束组织伸长率及断裂韧度优于垂直试样相互交错的针状α组织,最大值为14.5%和101.45MPa·m1/2,而抗拉强度和屈服强度较小;电子束选区熔化制备的TC4试样断口由许多不同尺寸的韧窝和弯曲的撕裂棱组成,断裂方式以延性韧窝状沿晶断裂为主,水平试样的断口撕裂棱曲折程度、韧窝尺寸和深度大于垂直试样。  相似文献   

13.
The primary objective of this work is to study the influence of microstructure on the tensile properties of a 0.34C---3Ni---Cr---Mo---V steel with mixed lower-bainite---martensite microstructures. In general, the tensile yield strength and ultimate strength of the steel with mixed structures were found to decrease with an increase in the lower-bainite content, while a few exceptions were observed on mixed structures containing 10–25% lower bainite which showed higher yield strength than fully martensitic structure. The introduction of lower bainite in prior austenite grains was found to cause a refinement of the martensite packet size. However, the improvement of the strength of martensite due to the refinement of its substructure can only account for part of the strengthening in a mixed lower-bainite---martensite structure. The tensile ductility (RA%) of the mixed lower-bainite---martensite structure in general is quite close to that of the fully martensitic structure except for the fine austenite grain condition (8 μm), for which the mixed structures show inferior RA% as compared with the fully martensitic structure. On the other hand, the refinement of prior austenite grain size was found to cause beneficial effects on both tensile strength and ductility for the steel with mixed lower-bainite---martensite structure.  相似文献   

14.
In this work, supermartensitic stainless steel pipes were radial friction (RF) welded and their microstructures and local mechanical properties (hardness, fracture toughness and micro-tensile strength) were characterized in the as-welded condition. Defect-free RF welds were produced with a matching consumable ring (CR) under optimized welding conditions. The formation of a fine structure consisting of a mixture of virgin martensite and some stable austenite retained in the CR region was observed. On the other hand, the presence of virgin martensite plus δ-ferrite was found in the microstructures of the heat affected zone (HAZ) and thermo-mechanically affected zone (TMAZ). A ductile fracture was detected in the CR and weld interface regions at −40 °C. Moreover, both the CR and weld interface regions showed higher hardness and strength values than those of the base material (overmatching), without presenting significant losses in ductility and fracture toughness, which was attributed directly to the fine transformed microstructure of the weld region.  相似文献   

15.
In this paper, influence of equal channel angular pressing (ECAP) on the fracture behavior of Al-7075 alloy is experimentally investigated. The specimens are successfully processed by ECAP methodology up to four passes using different routes. Transmission electron microscope (TEM) images showed that after four passes of ECAP, the average grain size is refined from 40 μm to less than about 500 nm. The percentage increase in yield strength, ultimate strength and microhardness of the specimens after four ECAP passes was 230, 90 and 110 respectively. Standard tests on the disk-shaped compact DC(T) specimens showed that fracture toughness is decreased up to 8% at the first ECAP pass while after four passes, this parameter roused to 17% higher than that of annealed condition. Furthermore, scanning electron microscope (SEM) micrographs demonstrated that ductile fracture mechanism with large dimples occurred in the annealed samples, changed to limited ductile fracture with fine dimples after ECAP process. This research provides new insights into the effect of ECAP and grain refinement on the fracture behavior of materials.  相似文献   

16.
Abstract

The present study is concerned with effects of microstructural factors such as distribution and fraction of coarse carbides located along solidification cell boundaries and characteristics of tempered martensitic matrix on fracture properties of five high speed steel (HSS) rolls manufactured by a centrifugal casting method. In situ microfracture observation, fracture toughness measurement and fractographic observation were conducted on these rolls to clarify fracture mechanisms. The in situ observation results indicated that coarse carbides located along cell boundaries provided easy intercellular fracture sites under a low stress intensity factor level. In the rolls whose intercellular carbide fraction and matrix hardness were high, fracture easily occurred under a low stress intensity factor. On the contrary, in the rolls where a small amount of intercellular carbides was distributed on the relatively ductile matrix of lath tempered martensite, the fracture path was accompanied by a considerable amount of plastic deformation including shear band formation, thereby resulting in high fracture toughness. In order to obtain better microstructure, hardness and fracture toughness of the HSS rolls, the minimisation of intercellular carbides, the refinement of carbides and the improvement of the matrix characteristics by controlling alloying elements and heat treatment conditions were suggested.  相似文献   

17.
Abstract

A ductile iron was austempered at 302 and 385°C for various times to get lower and upper ausferrite microstructures respectively. The microstructures were characterised by optical microscopy and X-ray diffraction. Plane strain fracture toughness was determined under all heat treatment conditions. While the austempered ductile iron with lower ausferrite microstructure showed higher fracture toughness, the one with upper ausferrite microstructure exhibited higher tensile toughness and strain hardening coefficient. A model was developed relating fracture toughness to the yield strength (σy) volume fraction of retained austenite (Xy) and the carbon content of the retained austenite (Cy). Experimental results showed excellent agreement with the prediction of the model that <disp-formula><graphic href="splitsection9-m1.tif"/></disp-formula> is proportional to σy(XyCy)½.  相似文献   

18.
A transformation toughening white cast iron   总被引:8,自引:0,他引:8  
An experimental white cast iron with the unprecedented fracture toughness of 40 MPa m1/2 is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M7C3 carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an "effective" sub-ambient MS temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature KIc tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high toughness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the KIc experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
20.
《Materials Letters》2004,58(22-23):2707-2711
The effect of austempering on the microstructure and toughness of nodular cast iron (designated as CuNiMoSG) alloyed with molybdenum, copper, nickel, and manganese has been studied. Light microscopy (LM), scanning electron microscopy (SEM), and X-ray diffraction technique were performed for microstructural characterization, whereas impact energy test was applied for toughness measurement. Specimens were austenitised at 860 °C, then austempered for various times at 320 and 400 °C, followed by ice-water quenching. Austempering at 320 °C produces a microstructure consisting of a mixture of acicular bainitic ferrite and the stable carbon-enriched austenite. In this microstructure ε-carbides are also identified after austempering up to 5 h. Fracture mode is changed from ductile to brittle with the prolonged time of austempering at 320 °C. The highest impact energy (115 kJ) corresponds not only to ductile fracture, but also to the maximum value of the volume fraction of retained austenite. Only martensitic structure was observed during austempering at 400 °C, inducing brittle fracture and significantly low-impact energy (10–12 kJ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号