首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.  相似文献   

2.
3.
    
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.  相似文献   

4.
5.
    
Stem cells have shown great potential functions for tissue regeneration and repair because of their unlimited self-renewal and differentiation. Stem cells reside in their niches, making them a hotspot for the development and diagnosis of diseases. Complex interactions between niches and stem cells create the balance between differentiation, self-renewal, maturation, and proliferation. However, the multi-facet applications of stem cells have been challenged since the complicated responses of stem cells to biological processes were explored along with the limitations of current systems or methods. Emerging evidence highlights that synchrotron infrared microspectroscopy, known as synchrotron radiation-based Fourier transform infrared microspectroscopy, has been investigated as a potentially attractive technology with its non-invasive and non-biological probes in stem cell research. With their unique vibration bands, the quantitative mapping of the content and distribution of biomolecules can be detected and characterized in cells or tissues. In this review, we focus on the potential applications of synchrotron infrared microspectroscopy for investigating the differentiation and fate determination of stem cells.  相似文献   

6.
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.  相似文献   

7.
    
Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), have the potential to differentiate into many cell types that originate from the three germ layers, such as dopamine-secreting cells and insulin-secreting cells for the treatment of Alzheimer's disease and diabetes, respectively. However, it is challenging to guide hPSC differentiation into desired cell lineages due to their varying differentiation ability. A reasonable strategy is to mimic the stem cell microenvironment for the differentiation of hPSCs into specific cell lineages using optimal polymeric biomaterials for hPSC culture. This review summarizes various methods for differentiating hPSCs cultured on polymeric biomaterials and discusses the optimal methods and cell culture polymeric biomaterials for hPSC differentiation into specific cell lineages. The recent trend in protocols avoids embryoid body (EB, aggregated cells) formation because EBs contain different types of cells. The combination of appropriate differentiation protocols and cell culture polymeric biomaterials for the differentiation of hPSCs into specific cell lineages will produce a large quantity of highly pure GMP-grade differentiated cells for use in translational medicine.  相似文献   

8.
    
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.  相似文献   

9.
    
Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.  相似文献   

10.
    
Otic organoids have the potential to resolve current challenges in hearing loss research. The reproduction of the delicate and complex structure of the mammalian cochlea using organoids requires high efficiency and specificity. Recent attempts to strengthen otic organoids have focused on the effects of the Wnt signaling pathway on stem cell differentiation. One important aspect of this is the evaluation of undesirable effects of differentiation after Wnt activation. In the present study, we differentiated mouse embryonic stem cell embryoid bodies (EB) into otic organoids and observed two morphologies with different cell fates. EBs that underwent a core ejection process, or ‘enucleation,’ were similar to previously reported inner ear organoids. Meanwhile, EBs that retained their core demonstrated features characteristic of neural organoids. The application of a Wnt agonist during the maturation phase increased enucleation, as well as otic organoid formation, in turn leading to sensory hair cell-like cell generation. However, with a longer incubation period, Wnt activation also led to EBs with ‘beating’ organoids that exhibited spontaneous movement. This observation emphasizes the necessity of optimizing Wnt enhancement for the differentiation of specific cells, such as those found in the inner ear.  相似文献   

11.
    
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.  相似文献   

12.
    
Unlike some lower vertebrates which can completely regenerate their heart, the human heart is a terminally differentiated organ. Cardiomyocytes lost during cardiac injury and heart failure cannot be replaced due to their limited proliferative capacity. Therefore, cardiac injury generally leads to progressive failure. Here, we summarize the latest progress in research on methods to induce cardiomyocyte cell cycle entry and heart repair through the alteration of cardiomyocyte plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions.  相似文献   

13.
14.
    
Brugada syndrome (BrS) is an inherited cardiac arrhythmia that predisposes to ventricular fibrillation and sudden cardiac death. It originates from oligogenic alterations that affect cardiac ion channels or their accessory proteins. The main hurdle for the study of the functional effects of those variants is the need for a specific model that mimics the complex environment of human cardiomyocytes. Traditionally, animal models or transient heterologous expression systems are applied for electrophysiological investigations, each of these models having their limitations. The ability to create induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), providing a source of human patient-specific cells, offers new opportunities in the field of cardiac disease modelling. Contemporary iPSC-CMs constitute the best possible in vitro model to study complex cardiac arrhythmia syndromes such as BrS. To date, thirteen reports on iPSC-CM models for BrS have been published and with this review we provide an overview of the current findings, with a focus on the electrophysiological parameters. We also discuss the methods that are used for cell derivation and data acquisition. In the end, we critically evaluate the knowledge gained by the use of these iPSC-CM models and discuss challenges and future perspectives for iPSC-CMs in the study of BrS and other arrhythmias.  相似文献   

15.
16.
    
In vitro organoids derived from human pluripotent stem cells (hPSCs) have been developed as essential tools to study the underlying mechanisms of human development and diseases owing to their structural and physiological similarity to corresponding organs. Despite recent advances, there are a few methodologies for three-dimensional (3D) skeletal muscle differentiation, which focus on the terminal differentiation into myofibers and investigate the potential of modeling neuromuscular disorders and muscular dystrophies. However, these methodologies cannot recapitulate the developmental processes and lack regenerative capacity. In this study, we developed a new method to differentiate hPSCs into a 3D human skeletal muscle organoid (hSkMO). This organoid model could recapitulate the myogenesis process and possesses regenerative capacities of sustainable satellite cells (SCs), which are adult muscle stem/progenitor cells capable of self-renewal and myogenic differentiation. Our 3D model demonstrated myogenesis through the sequential occurrence of multiple myogenic cell types from SCs to myocytes. Notably, we detected quiescent, non-dividing SCs throughout the hSkMO differentiation in long-term culture. They were activated and differentiated to reconstitute muscle tissue upon damage. Thus, hSkMOs can recapitulate human skeletal muscle development and regeneration and may provide a new model for studying human skeletal muscles and related diseases.  相似文献   

17.
    
Cardiovascular disease is the leading cause of deaths worldwide, claiming an estimated total of 17.9 million lives each year, of which one-third of the people are under the age of 70 years. Since adult cardiomyocytes fail to regenerate, the heart loses the ability to repair itself after an injury, making patients with heart disease suffer from poor prognosis. Pluripotent stem cells have the ability to differentiate into cardiomyocytes in vitro through a well-established process, which is a new advancement in cardiac regeneration therapy. However, pluripotent stem cell-derived cardiomyocytes have certain drawbacks, such as the risk of arrhythmia and immune incompatibility. Thus, amniotic fluid stem cells (AFSCs), a relatively novel source of stem cells, have been exploited for their ability of pluripotent differentiation. In addition, since AFSCs are weakly positive for the major histocompatibility class II molecules, they may have high immune tolerance. In summary, the possibility of development of cardiomyocytes from AFSCs, as well as their transplantation in host cells to produce mechanical contraction, has been discussed. Thus, this review article highlights the progress of AFSC therapy and its application in the treatment of heart diseases in recent years.  相似文献   

18.
19.
Radiation therapy is the most widely used and effective treatment for orbital tumors, but it causes dry eye due to lacrimal gland damage. Induced pluripotent stem cell-derived conditioned medium (iPSC-CM) has been shown to rescue different types of tissue damage. The present study investigated the mechanism of the potential radioprotective effect of IPS cell-derived conditioned medium (iPSC-CM) on gamma-irradiation-induced lacrimal gland injury (RILI) in experimental mice. In this study, we found that iPSC-CM ameliorated RILI. iPSC-CM markedly decreased radiotherapy induced inflammatory processes, predominantly through suppressing p38/JNK signaling. Further signaling pathway analyses indicated that iPSC-CM could suppress Akt (Protein Kinase B, PKB) phosphorylation. High levels of midkine (MDK) were also found in iPSC-CM and could be involved in lacrimal gland regeneration by promoting cell migration and proliferation. Thus, our study indicates that inhibiting the p38/JNK pathway or increasing the MDK level might be a therapeutic target for radiation-induced lacrimal gland injury.  相似文献   

20.
    
Gene transfection is a valuable tool for analyzing gene regulation and function, and providing an avenue for the genetic engineering of cells for therapeutic purposes. Though efficient, the potential concerns over viral vectors for gene transfection has led to research in non-viral alternatives. Cationic polyplexes such as those synthesized from chitosan offer distinct advantages such as enhanced polyplex stability, cellular uptake, endo-lysosomal escape, and release, but are limited by the poor solubility and viscosity of chitosan. In this study, the easily synthesized biocompatible and biodegradable polymeric polysorbate 80 polybutylcyanoacrylate nanoparticles (PS80 PBCA NP) are utilized as the backbone for surface modification with chitosan, in order to address the synthetic issues faced when using chitosan alone as a carrier. Plasmid DNA (pDNA) containing the brain-derived neurotrophic factor (BDNF) gene coupled to a hypoxia-responsive element and the cytomegalovirus promotor gene was selected as the genetic cargo for the in vitro transfection-guided neural-lineage specification of mouse induced pluripotent stem cells (iPSCs), which were assessed by immunofluorescence staining. The chitosan-coated PS80 PBCA NP/BDNF pDNA polyplex measured 163.8 ± 1.8 nm and zeta potential measured −34.8 ± 1.8 mV with 0.01% (w/v) high molecular weight chitosan (HMWC); the pDNA loading efficiency reached 90% at a nanoparticle to pDNA weight ratio of 15, which also corresponded to enhanced polyplex stability on the DNA stability assay. The HMWC-PS80 PBCA NP/BDNF pDNA polyplex was non-toxic to mouse iPSCs for up to 80 μg/mL (weight ratio = 40) and enhanced the expression of BDNF when compared with PS80 PBCA NP/BDNF pDNA polyplex. Evidence for neural-lineage specification of mouse iPSCs was observed by an increased expression of nestin, neurofilament heavy polypeptide, and beta III tubulin, and the effects appeared superior when transfection was performed with the chitosan-coated formulation. This study illustrates the versatility of the PS80 PBCA NP and that surface decoration with chitosan enabled this delivery platform to be used for the transfection-guided differentiation of mouse iPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号