首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Composites Part B》2013,44(8):3412-3418
This paper deals with the preparation, structural characterization, and physical performances of composites composed of biomass-based cellulose acetate propionate (CAP) and exfoliated graphene (EG). As a reinforcing nanofiller, EG is thus prepared by an oxidation/thermal expansion process of natural graphite flakes and it is characterized to consist of disordered graphene platelets. Structural features, thermal stability, mechanical modulus, and electrical resistivity of CAP/EG composites are investigated as a function of EG content. SEM and X-ray diffraction data demonstrate that graphene platelets of EG are well dispersed and exfoliated in the CAP matrix for the composites with up to ∼1 wt.% EG, although they are partially aggregated in the composites with higher EG contents above ∼3 wt.%. Thermo-oxidative stability of CAP/EG composites under active oxygen gas condition is improved substantially due to the gas barrier effect of graphene platelets of EG dispersed in the CAP matrix. Dynamic mechanical modulus of the composites is also enhanced significantly with increasing the EG content. This mechanical enhancement of CAP/EG composites is analyzed by adopting the Halpin–Tsai model. The electrical volume resistivity of CAP/EG composites prepared by melt-compounding is decreased dramatically from ∼1015 to ∼106 Ω cm by forming the electrical conduction path at a certain EG content between 5 and 7 wt.%.  相似文献   

2.
Nylon-6/flake graphite (FG) composite, Nylon-6/graphene intercalation compounds (GIC) composite and Nylon-6/exfoliated graphite (EG) composite were prepared by FG, GIC, EG and caprolactam via in situ polymerization, and the volume resistivities of Nylon-6/flake graphite derivatives composites were also investigated. Meanwhile, the structure of Nylon-6/EG composite was characterized and the thermal stability of Nylon-6/EG composite was investigated as well. When the mass percents of FG, GIC and EG were 1%, 2–4% and 1%, the volume resistivities of flake graphite derivatives composites would reach 7.5 × 106 Ω cm, 3.6 × 108–1.4 × 106 Ω cm and 2.3 × 106 Ω cm. When the mass percent of EG increases from 0% to 9%, the thermal stability temperature of Nylon-6/EG composite would enhance from 70 to 196 °C. This shows that Nylon-6/flake graphite derivatives composites can have the antistatic property and thermal stability synchronously.  相似文献   

3.
Functionalized graphene (FG) was successfully synthesized by treating graphene oxide with (3-aminopropyl) triethoxysilane (KH-550) and then reduced by hydrazine hydrate. Subsequently, significant reinforcement of polyurethane/epoxy resin (PU/EP) composites in situ synthesized on the FG is prepared. Morphologic study shows that, due to the formation of chemical bonding, the FG was dispersed well in the PU/EP matrix and the mechanical performance is improved. Meanwhile, the thermal degradation temperature was enhanced almost 50 °C higher than that of PU/EP. The conductivity of PU/FG/EP nanocomposites was 82.713 × 10−6 S/m at 2.0 wt% loadings. The resulting composites exhibited 96% shape fixity, 94% shape recovery, enhanced shape recovery force to realize thermo-electric dual-responsive property. Comparing with the results in literature, the composites used in this study have shown a progress between electrical conductivity and shape memory property.  相似文献   

4.
The paper describes the effect of aspect ratio of multiwall carbon nanotubes (MCNTs) on the electrical, mechanical and electromagnetic properties of polypropylene random copolymer (PPC). Long and short MCNTs with aspect ratio of ~ 1356–1937 and ~ 158 respectively were melt-blended with PPC in a micro twin screw extruder with melt recirculation that allow the formation of composites having ~ 15 wt.% MCNTs. The good dispersion was confirmed by scanning electron microscopy and observation of electrical conductivity at low percolation threshold (0.45 and 1.07 wt.% for l- & s-MCNT/PPC composite respectively) and improvement of modulus and strength. The 15 wt.% l-MCNTs and s-MCNT loaded composites show 52% and 60% improvement in modulus respectively and 20% & 18% improvement in strength over neat PPC. The electromagnetic interference (EMI) shielding response (in 8.2–12.4 GHz frequency range) revealed that l-MCNT based PPC composites display better shielding at lower loading (up to 4 wt.%) while s-MCNT show better attenuation at higher loadings. The realization shielding effectiveness value of − 27 dB (> 99% attenuation) respectively for l-MCNT composites: and − 37 dB (> 99.9% attenuation) for s-MCNTs composites at 15 wt.% reflect their potential for making light weight and structurally strong EMI shields.  相似文献   

5.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

6.
The aim of this paper is to prepare a polymer-based carbon nanocomposite reinforced by carbon fiber cloth (CF) to be utilized as bipolar plate of proton exchange membrane (PEM) fuel cell. For this purpose, some single, double, and triple-filler composites were manufactured by using phenolic resin as polymer (P) and graphite (G), carbon fiber (CF) and expanded graphite (EG) as fillers. The production method was compression-molding technique. The electrical conductivity, flexural strength, toughness, hardness, porosity, and hydrogen permeability tests were then measured to determine the mechanical and physical properties. A triple-filler composite containing 45 wt.% G, 10 wt.% CF, 5 wt.% EG, reinforced by a layer of CF cloth, was selected as composite bipolar plate. The electrical conductivity, thermal conductivity, and flexural strength of this composite were 74 S/cm, 9.6 W/m K, and 74 MPa, respectively, which are higher than the specified value by department of energy in USA (DOE). The composite bipolar plate used in the single fuel cell assembly showed a maximum power density 810 mW/cm2. In this paper, a material selection was performed on the different materials of bipolar plates. It can be concluded that the composite bipolar plates are more suitable for high life time stationary applications.  相似文献   

7.
《Composites Science and Technology》2007,67(11-12):2564-2573
The precursor of polyimide, polyamic acid, was prepared by reacting 4,4′-oxydianiline (ODA) with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA). Unmodified, acid-modified and amine-modified multiwall carbon nanotubes (MWCNT) were separately added to the polyamic acid and heated to 300 °C to produce polyimide/carbon nanotube composite. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) microphotographs reveal that acid-modified MWCNT and amine-modified MWCNT were dispersed uniformly in the polyimide matrix. The effect of the acid and amine-modified MWCNTs on the surface and volume electrical resistivities of MWCNT/polyimide composites were investigated . The surface electrical resistivity of the nanocomposites decreased from 1.28 × 1015 Ω/cm2 (neat polyimide) to 7.59 × 106 Ω/cm2 (6.98 wt% unmodified MWCNT content). Adding MWCNTs influenced the glass transition temperatures of the nanocomposites. Modified MWCNTs significance enhanced the mechanical properties of the nanocomposites. The tensile strength of the MWCNT/polyimide composite was increased from 102 MPa (neat polyimide) 134 MPa (6.98 wt% acid modified MWCNT/polyimide composites).  相似文献   

8.
In this study, two types of polyimide (PI) nanofiber mats, including (1) the mats consisting of (almost) randomly overlaid PI nanofibers and (2) the mats consisting of highly aligned PI nanofibers, were prepared by the materials-processing technique of electrospinning. The nanofiber mats were subsequently used to develop composites with polyamide 6 (PA6) via the composites – fabrication method of polymer melt infiltration lamination (PMIL). Owing to superior mechanical properties (i.e., the tensile strength and modulus were 1.7 GPa and 37.0 GPa, respectively) and large specific surface area of electrospun PI nanofibers, the PI/PA6 composites with PI nanofiber mats as skeletal framework demonstrated excellent mechanical properties. In particular, the PI/PA6 composite containing 50 wt.% of aligned PI nanofibers had the tensile strength and modulus of 447 MPa and 3.0 GPa along the longitudinal direction, representing ~700% and ~500% improvements as compared to neat PA6.  相似文献   

9.
Highly filled charcoal powder reinforced ultra-high molecular weight polyethylene (UHMWPE) composites with tunable electrical conductivity and good mechanical properties were prepared using extrusion and hot-compression techniques. Three kinds of charcoal carbonized under various temperatures were used in this study. The scanning electron microscopy showed that charcoal powder was dispersed uniformly in the UHMWPE matrix and strong interfacial interaction was achieved. The tensile test results showed that with the incorporation of charcoal powder, the tensile strength increased by 325%, 262% and 203% respectively compared to neat UHMWPE. Furthermore, the composites containing 70 wt.% charcoal powder (above 700 °C) exhibited good electrical conductivity, which is adequate for many electrical applications. It was obvious that the storage modulus of all the composites increased remarkably with the incorporation of charcoal powder, E′ reached 30.2, 26.8 and 25.9 GPa for samples PC1100/UHMWPE, AC1100/UHMWPE and BC1100/UHMWPE at − 150 °C respectively.  相似文献   

10.
This study investigated the effect of the addition of sol–gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol–gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites. The elastic modulus of the PCL/NBG composites increased remarkably from 89 ± 11 MPa to 383 ± 50 MPa with increasing NBG content from 0 to 30 wt.%, while still showing good ultimate tensile strength in the range of 15–19 MPa. The hydrophilicity, water absorption and degradation behavior of the PCL/NBG composites were also enhanced by the addition of the NBG particles. Furthermore, the PCL/NBG composite with a NBG content of 30 wt.% showed significantly enhanced in vitro bioactivity and cellular response compared to those of the pure PCL.  相似文献   

11.
The resistive behavior of multi-walled carbon nanotube (MWCNT)/epoxy resins, tested under mechanical cycles and different levels of applied strain, was investigated for specimens loaded in axial tension. The surface normalized resistivity is linear with the strain for volume fraction of MWCNTs between 2.96 × 10−4 and 2.97 × 10−3 (0.05 and 0.5% wt/wt). For values lower than 0.05% wt/wt, close to the electrical percolation threshold (EPT) a non-linear behavior was observed. The strain sensitivity, in the range between 0.67 and 4.45, may be specifically modified by controlling the nanotube loading, in fact the sensor sensitivity decreases with increasing the carbon nanotubes amount. Microscale damages resulted directly related to the resistance changes and hence easily detectable in a non-destructive way by means of electrical measurements. In the fatigue tests, the damage is expressed through the presence of a residual resistivity, which increases with the amount of plastic strain accumulated in the matrix.  相似文献   

12.
We report an easy and efficient approach to the development of advanced thermoplastic composites based on multi-scale carbon fiber (CF) and graphene nanoplatelet (GN) reinforcement. Poly (arylene ether nitrile) (PEN)/CF/GN composites, prepared by the twin-screw extrusion, exhibited excellent mechanical properties. For example, the flexural modulus of PEN/CF/GN composites was 18.6 GPa, which is 1.7, 4.5 and 6.4 times larger than those of PEN/CF composites, PEN/GN composites and PEN host, respectively. Based on the SEM image observation, such mechanical enhancements can be attributed to the synergetic effect of micro-scale CF and nano-scale GN in the PEN matrix (decreased matrix-rich and free-volume regions and enhanced interfacial interactions). For 5 wt.% GN-filled PEN/CF/GN composites, the Td30% of PEN/CF/GN composites was 145 °C and 62.8 °C compared with those of PEN host and PEN/CF composites, respectively. This study has demonstrated that multi-scale CF and GN have an obvious synergetic reinforcing effect on the mechanical properties and thermal stabilities of thermoplastic composites, which provides an easy and effective way to design and improve the properties of composite materials.  相似文献   

13.
《Materials Letters》2005,59(24-25):3062-3065
Multi-walled carbon nanotube (MWNT) reinforced carbon matrix (MWNT/C) composites have been explored using mesophase pitch as carbon matrix precursor in the present work. Results show that carbon nanotubes (CNTs)can enhance the mechanical properties of carbon matrix significantly. The maximal increment of the bending strength and stiffness of the composites, compared with the carbon matrix, are 147% and 400%, respectively. Whereas the highest in-plane thermal conductivity of the composites is 86 W m 1 K 1 which much lower than that of carbon matrix (253 W m 1 K 1).At the same time the electrical resistivity of the composites is much higher than that of matrix. It is implicated that CNTs seem to play the role of thermal/electrical barrier in the composites. FSEM micrograph of the fracture surface for the composites shows that the presence of CNTs restrains the crystallite growth of carbon matrix, which is one of factors that improve mechanical properties and decrease the conductive properties of the composites. The defects and curved shape of CNTs are also the affecting factors on the conductive properties of the composites.  相似文献   

14.
The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix composites is greatly improved by adding tellurium particles (13 vol.%), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%). The thermoelectric power is increased from 8 to 163 μV/K, the electrical resistivity is decreased from 0.17 to 0.02.Ω.cm, the thermal conductivity is decreased from 1.31 to 0.51 W/m.K, and the dimensionless thermoelectric figure of merit ZT at 70 °C is increased from 9 × 10−6 to 9 × 10−2. Tellurium increases the thermoelectric power greatly. Bismuth telluride decreases the electrical resistivity and thermal conductivity. Carbon black decreases the electrical resistivity.  相似文献   

15.
The focus of this work was to produce short (random and aligned) and long (aligned) industrial hemp fibre reinforced polylactic acid (PLA) composites by compression moulding. Fibres were treated with alkali to improve bonding with PLA. The percentage crystallinity of PLA in composites was found to be higher than that for neat PLA and increased with alkali treatment of fibres which is believed to be due to the nucleating ability of the fibres. Interfacial shear strength (IFSS) results demonstrated that interfacial bonding was also increased by alkali treatment of fibres which also lead to improved composite mechanical properties. The best overall properties were achieved with 30 wt.% long aligned alkali treated fibre/PLA composites produced by film stacking technique leading to a tensile strength of 82.9 MPa, Young’s modulus of 10.9 GPa, flexural strength of 142.5 MPa, flexural modulus of 6.5 GPa, impact strength of 9 kJ/m2, and a fracture toughness of 3 MPa m1/2.  相似文献   

16.
The effect of thermally reduced graphene oxide (TRGO) on the electrical percolation threshold of multi wall carbon nanotube (MWCNT)/epoxy cured composites is studied along with their combined rheological/electrical behavior in their suspension state. In contrast to MWCNT and carbon black (CB) based epoxy composites, there is no prominent percolation threshold for the bi-filler (TRGO–MWCNT/epoxy) composite. Furthermore, the electrical conductivity of the bi-filler composite is two orders of magnitude lower (∼1 × 10−5 S/m) than the pristine MWCNT/epoxy composites (∼1 × 10−3 S/m). This result is primarily due to the strong interaction between TRGO and MWCNTs. Optical micrographs of the suspension and scanning electron micrographs of the cured composites indicate trapping of MWCNTs onto TRGO sheets. A morphological model describing this interaction is presented.  相似文献   

17.
《Composites Part A》2007,38(7):1675-1682
This research explores the potential of using exfoliated graphite nanoplatelets, xGnP, (graphene sheets ∼10 nm thickness, ∼1 μm diameter), as reinforcement in polypropylene, PP. xGnP–PP nanocomposites were fabricated by melt mixing and injection molding. The feasibility of using xGnP–PP nanocomposites was investigated by evaluating the flexural strength, modulus and impact strength and studying the morphology of this system as a function of xGnP loading and aspect ratio and by comparing the xGnP–PP with composites made with commercial available reinforcements such as carbon fibers, carbon black and clays. It is concluded that the smaller aspect ratio xGnP has the strongest impact on the mechanical properties of PP, at loadings up to 5 vol.%, compared to the other reinforcements used, which reflects the compatibility between the exfoliated graphite nanoplatelets and the PP matrix and the exceptional mechanical properties of xGnP, similar to crystalline graphite.  相似文献   

18.
Synthetic bone graft substitutes based on PLLA have been largely studied during the past decade. PLLA/hydroxyapatite composites appear as promising materials for large bone defect healing. In this study dense PLLA/nano-hydroxyapatite composites were prepared by hot pressing. Dense samples were investigated rather than porous scaffolds, in order to shed light on possible correlations between intrinsic mechanical properties and nano-hydroxyapatite concentration. Hydroxyapatite deagglomerated by wet attrition milling, and further dispersed into chloroform was used (median diameter = 80 nm). Particle size distribution measurements and transmission electron microscopy show evidence that particle size and dispersion are maintained throughout the successive steps of composite processing. Mechanical properties were tested (uni-axial and diametral compression tests) as a function of nano-hydroxyapatite content. Increasing concentrations of nano-hydroxyapatite (0, 25 and 50 wt.%) increase the Young's modulus and the mechanical strength of the composite; at the same time, the failure mechanism of the material changes from plastic to brittle. Young's modulus over 6 GPa and uniaxial compressive strength over 100 MPa have been achieved. These values expressed in terms of intrinsic tensile and shear strengths indicate that 50 wt.% nano-hydroxyapatite containing samples develop properties comparable to those of cortical bone. PLLA/nano-hydroxyapatite composites are thus promising candidates to develop bioresorbable porous bone substitutes showing superior mechanical performance.  相似文献   

19.
Yttria-neodymia double stabilized ZrO2-based nanocomposites with 40 vol% electrical conductive TiCN were fully densified by means of pulsed electric current sintering (PECS) in the 1400–1500 °C range. The Y2O3 stabilizer content was fixed at 1 mol% whereas the Nd2O3 co-stabilizer content was varied between 0.75 and 2 mol% in order to optimise the mechanical properties. The mechanical (Vickers hardness, fracture toughness and bending strength), electrical (electrical resistivity) and microstructural properties were investigated and the hydrothermal stability in steam at 200 °C was assessed.The nanocomposites with 1–1.75 mol% Nd2O3, PECS at 1400 or 1450 °C, have an excellent fracture toughness of 8 MPa m1/2, although the grain size of both ZrO2 and TiCN phases after densification is in the 100 ± 30 nm range. Moreover, the composites combine a hardness of about 13 GPa, a bending strength of 1.1–1.3 GPa with a low electrical resistivity (1.6–2.2 × 10?5 Ω m) allowing electrical discharge machining. The hydrothermal stability of the double stabilizer nanocomposites was higher than for yttria-stabilized ZrO2-based composites with the same overall stabilizer content.  相似文献   

20.
Ferric pyrophosphate (FePP) with silica-gel microencapsulated ammonium polyphosphate (MCAPP) and char forming agent (CFA) in the flame retardation of ethylene-vinyl acetate copolymer has been studied through LOI and UL-94 test. The UL-94 data show that EVA with 20 wt.% IFR only has V-2 rating. However, with the addition of 1 wt.% FePP and 19 wt.% IFR, it can reach V-0 rating. The properties of the composites before and after the electron beam irradiation are compared. The volume resistivity, mechanical and thermal properties of the irradiated EVA composites are also evidently improved at appropriate irradiation dose as compared with those of un-irradiated ones. The tensile strength of EVA/IFR/FePP composites with 160 kGy irradiation is 21.8 Mpa, which is much higher than that of un-irradiated one (12.7 MPa). Furthermore, the thermal aged test and water resistance test results demonstrate that EVA/IFR/FePP composites have good thermal aging property and water durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号