首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This work presents a space‐frequency prefiltering scheme for slowly time‐varying TDD MC‐CDMA downlink communications with multiple antennas at the base station (BS). Unlike the conventional spatially uncorrelated block fading channel model, both channel variation in each packet and spatial correlation are considered in the design. In the TDD mode, the mobile terminals (MTs) transmit training signals at the end of each uplink packet. In the following downlink packet, the BS computes the signal weights on different antennas and subcarriers for each MT in each symbol period based on the channel state predicted from the received training signals. The goal is to minimize the total required transmit power while keeping the received signal‐to‐interference‐plus‐noise ratio (SINR) as the target for each MT. Moreover, the maximum packet length for satisfying the SINR requirements has been determined. The results indicate that the total required transmit power can be reduced by a lower mobile speed or more BS antennas. As a result, the maximum packet length can be extended in virtue of the power reduction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Space-time communication for OFDM with implicit channel feedback   总被引:1,自引:0,他引:1  
We consider wideband communication (e.g., using orthogonal frequency-division multiplexed (OFDM) systems) over a typical cellular "downlink," in which both the base station and the mobile may have multiple antennas, but the number of antennas at the mobile is assumed to be small. Implicit channel feedback can play a powerful role in such systems, especially for outdoor channels, which typically exhibit narrow spatial spreads. A summary of our findings is as follows: a) Implicit channel feedback regarding the covariance matrix for the downlink space-time channel can be obtained, without any power or bandwidth overhead, by suitably averaging uplink channel measurements across frequency. Since this approach relies on statistical reciprocity, it applies to both time-division duplex (TDD) and frequency-division duplex (FDD) systems. Using such covariance feedback yields significantly better performance at lower complexity than conventional space-time or space-frequency codes, which do not employ feedback; b) We provide guidelines for optimizing antenna spacing in systems with covariance feedback. Theoretical investigation of a hypothetical system with completely controllable channel eigenvalues shows that the optimal number of channel eigenmodes is roughly matched to the (small) number of receive antenna elements. Thus, while antenna elements in conventional systems without feedback should be spaced far apart in order to ensure uncorrelated responses, the optimal antenna spacing with covariance feedback is much smaller, thereby concentrating the channel energy into a small number of eigenmodes.  相似文献   

3.
In this article we consider network coordination as a means to provide spectrally efficient communications in cellular downlink systems. When network coordination is employed, all base antennas act together as a single network antenna array, and each mobile may receive useful signals from nearby base stations. Furthermore, the antenna outputs are chosen in ways to minimize the out-of-cell interference, and hence to increase the downlink system capacity. When the out-of-cell interference is mitigated, the links can operate in the high signal-to-noise ratio regime. This enables the cellular network to enjoy the great spectral efficiency improvement associated with using multiple antennas.  相似文献   

4.
Several smart antenna systems have been proposed and demonstrated at the base station (BS) of wireless communications systems, and these have shown that significant system performance improvement is possible. We consider the use of adaptive antennas at the BS and mobile stations (MS), operating jointly, in combination with orthogonal frequency-division multiplexing. The advantages of the proposed system includes reductions in average error probability and increases in capacity compared to conventional systems. Multiuser access, in space, time, and through subcarriers, is also possible and expressions for the exact joint optimal antenna weights at the BS and MS under cochannel interference conditions for fading channels are derived. To demonstrate the potential of our proposed system, analytical along with Monte Carlo simulation results are provided  相似文献   

5.
This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station (BS) is equipped with a very large number of antennas (also referred to as “massive multiple-input multiple-output (MIMO)”). We consider a time-division duplexing (TDD) scheme, in which reciprocity between the uplink and downlink channels can be assumed. Channel estimation is essential for downlink beamforming in massive MIMO, nevertheless, the pilot contamination effect hinders accurate channel estimation, which leads to overall performance degradation. Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals (AOAs) in the large-scale antenna system, we propose a multiple signals classification (MUSIC) based channel estimation algorithm during the uplink transmission. Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.  相似文献   

6.
This paper considers the wireless downlink transmissions in a single cell environment, for which the base station (BS) is assumed to schedule its transmission to each mobile station (MS) on a time-slot basis. Only one MS is selected for transmission during each time-slot and the selected MS possibly changes from one time-slot to another. This transmission scheme is thus referred to as dynamic time-division multiple-access (D-TDMA). Random transmit beamforming with the feedback of effective signal-to-noise ratio (ESNR) was proposed by Viswanath and Tse [IEEE Transactions on Information Theory, Vol. 48, No. 6, pp. 1277–1294, 2002] for D-TDMA-based systems in which multiple transmit antennas are equipped at the BS but only single receive antenna is equipped at each MS, or the so-called “MISO” systems. It was also shown in [Viswanath and Tse, 2002] that when the number of MSs in the system becomes large, the system throughput achieved by random transmit beamforming converges to that by coherent transmit beamforming which, however, requires the complete channel state information (CSI) of each MS at the BS. This paper extends upon the work in [Viswanath and Tse, 2002] to a more general scenario for which multiple transmit antennas and multiple receive antennas are equipped at the BS and each MS, respectively, or the so-called “MIMO” systems. We also consider several linear and nonlinear receiver structures and propose novel power allocation schemes to further improve the achievable system throughput. The throughput performance of the proposed receivers and power allocations schemes is compared through computer simulations and their fast convergence to the system throughput by coherent transmit beamforming is demonstrated.
Ying-Chang LiangEmail:
  相似文献   

7.
不精确的定时捕获造成分布式天线系统性能的严重下降,现有的改善分布式天线系统定时捕获性能的方法存在诸多不足。为进一步提高分布式天线系统定时捕获时的正确捕获概率,提出了一种基于分布式天线协同的定时捕获方法。该方法针对线形小区的平坦瑞利衰落信道场景,利用两根分布式接收天线接收来自单天线移动台的发射信号;随后,推导了两分布式接收天线的时延差先验信息,建立了协同定时捕获的协同条件;最后,根据门限检测方法在协同条件下进行定时捕获。分析与仿真结果表明,在定时捕获时,无论移动台处于协同区域的哪个位置,提出方法均能有效改善各分布式接收天线的正确捕获概率。  相似文献   

8.
Active Antenna Selection in Multiuser MIMO Communications   总被引:1,自引:0,他引:1  
The paper develops a dynamic antenna scheduling strategy for downlink MIMO communications, where a subset of the receive antennas at certain users is selectively disabled. The proposed method improves the signal-to-leakage-plus-noise (SLNR) ratio performance of the system and it relaxes the condition on the number of transmit-receive antennas in comparison to traditional zero-forcing and time-scheduling strategies. The largest value that the SLNR can achieve is shown to be equal to the maximum eigenvalue of a certain random matrix combination, and the probability distribution of this eigenvalue is characterized in terms of a Whittaker function. The result shows that increasing the number of antennas at some users can degrade the SLNR performance at other users. This fact is used to propose an antenna scheduling scheme that leads to improvement in terms of SINR outage probabilities  相似文献   

9.
Transmit antenna diversity (TAD) for the downlink channel has been investigated to improve the performance of wireless communications using multiple transmit antennas. We present a performance analysis for TAD with/without channel information. For performance analysis, we use the pairwise error probability and cutoff rate. For the closed-loop TAD in frequency-division duplex (FDD) mode, the downlink channel information should be transmitted to the base station from the mobile station. The feedback channel information may be imperfect because of the feedback delay, quantization error, and feedback error. The impact of imperfect channel information has been considered to analyze the performance of the TAD. We also present a performance analysis for a TAD technique that does not use the channel information, called space-time transmit diversity (STTD). Looking at the cutoff rates for the TAD techniques, the trellis-coded modulation (TCM) has been considered for better performance. Simulation results are shown to see the impact of the TCM on TAD systems  相似文献   

10.
The demand for wireless mobile communications services is growing at an explosive rate, with the anticipation that communication to a mobile device anywhere on the globe at all times will be available in the near future. An array of antennas mounted on vehicles, ships, aircraft, satellites, and base stations is expected to play an important role in fulfilling the increased demand of channel requirement for these services, as well as for the realization of the dream that a portable communications device the size of a wristwatch be available at an affordable cost for such services. This paper is the first of a two-part study. It provides a comprehensive treatment, at a level appropriate to nonspecialists, of the use of an antenna array to enhance the efficiency of mobile communications systems. It presents an overview of mobile communications as well as details of how an array may be used in various mobile communications systems, including land-mobile, indoor-radio, and satellite-based systems. It discusses advantages of an array of antennas in a mobile communications system, highlights improvements that are possible by using multiple antennas compared to a single antenna in a system, and provides details on the feasibility of antenna arrays for mobile communications applications  相似文献   

11.
This paper addresses some essential problems that have to be taken into consideration in implementing the smart antenna base station (SABS) for downlink beamforming. In order to provide proper downlink beamforming as well as uplink beamforming, a pragmatic procedure of automatic calibration is proposed. Through the experimental test, we confirm that the proposed calibration technique has eliminated the problem of the phase differences of the signal path associated with each antenna. Also, in this paper, we first analyze the multipath condition under which the auxiliary pilot becomes indispensable for detecting the data transmitted on the data channel and what happens if the auxiliary pilot is not available. Then, the performance of the downlink beamforming utilizing the auxiliary pilot is analyzed through the computer simulations. Finally, we present a comparison of downlink communications to uplink ones in terms of throughputs available at each of uplink and downlink communications. Weon-Cheol Lee received the B.S, M.S, and Ph.D. degree in Electronic Communication Engineering from Hanyang University, Korea, in 1992, 1994, 2005, respectively. From 1994 to 2000, he was with LG Electronic Inc., where he had worked for developing the digital VCR, digital cable modem, digital TV. Since 2001, he has been a professor with department of information and communications, Yong-in Songdam College, Korea. His research interests include smart antennas, mobile communications beyond the third generation, digital broadcasting technology, and communication signal processing. Dr. Lee also received the Best Research Paper Award and Excellent Research Engineer Award from LG Electronics, respectively. Seungwon Choireceived the BS degree from Hanyang University, Seoul, Korea, and the M.S. degree from Seoul National University, Korea, 1980 and 1982, respectively, both in electronics engineering, the MS degree (computer engineering) in 1985, and the PhD degree (electrical engineering), in 1988, both from Syracuse University, Syracuse, NY. From 1988 to 1989 he was with the Department of Electrical and Computer Engineering of Syracuse University, Syracuse, NY, as an Assistant Professor. In 1989 he joined the Electronics and Telecommunications Research Institute, Daejeon, Korea. From 1990 to 1992 he was with the Communications Research Laboratory, Tokyo, Japan, as a Science and Technology Agency fellow, developing the adaptive antenna array systems and adaptive equalizing filters. He joined Hanyang University, Seoul, Korea, in 1992 as an assistant professor. He is a professor in the School of Electrical and Computer Engineering of Hanyang University. Since 2003, Dr. Choi has been serving as a Vice Chairman and the representative of the ITU region 3 for SDR (Software Defined Radio) Forum and as a Director of the HY-SDR Research Center, MIC, Korea. His research interests include digital communications and adaptive signal processing with a recent focus on the implementation of the smart antenna systems for both mobile communication systems and wireless data systems. Jae-Moung Kim received the BS degree from Hanyang University, Korea in 1974, the MSEE degree from University of Southern California, USA in 1981, and the PhD degree from Yonsei University, Korea in 1987. He was a Vice President of Radio {&} Broadcasting Technology Laboratory and Director of Satellite Communication System Department at Electronics and Telecommunications Research Institute (ETRI) from September 1982 to March 2003. Since April of 2003, he has been a Professor in the Graduate School of Information Technology and Telecommunications, Inha University. He is a board member of directors of Korean Institute of Communication Science (KICS), a Vice President of Korea Society of Broadcast Engineers (KOSBE) and a senior member of IEEE. His research background is telecommunication systems modeling and performance analysis of broadband wireless access systems, mobile communications, satellite communications and broadcasting transmission technologies.  相似文献   

12.
MIMO CDMA antenna system for SINR enhancement   总被引:1,自引:0,他引:1  
We present a system to enhance signal-to-interference plus noise ratio (SINR) for multiple-input-multiple-output (MIMO) direct-sequence code-division multiple-access (DS/CDMA) communications in the downlink for frequency-selective fading environments. The proposed system utilizes a transmit antenna array at the base station and a receive antenna array at the mobile station with finite-impulse response filters at both the transmitter and receiver. We arrive at our system by attempting to find the optimal solution to a general MIMO antenna system. A single user joint optimum scenario and a multiuser SINR enhancement scenario are derived. In addition, a simplified one-finger receiver structure is introduced. Numerical results reveal that significant system performance and capacity improvement over conventional approaches are possible. We also investigate the sensitivity of the proposed system to channel estimation errors.  相似文献   

13.
We study the ergodic sum-rate capacity of the fading MIMO broadcast channel which is used to model the downlink of a cellular system with N/sub t/ transmit antennas at the,base and K mobile users each having N/sub r/ receive antennas. Assuming perfect channel state information (CSI) for all users is available at the transmitter and the receivers, we evaluate the sum-rate capacity numerically using the duality between uplink and downlink. Assuming Nt K, we also derive both upper and lower bounds on the sum-rate capacity to study its increase rate due to multi-user diversity. Finally, we compare three transmission schemes which use the single-user-MIMO scheme (SU-MIMO), ranked known interference (RKI) and zero-forcing beamforming (ZFB), respectively, to transmit to a selected set of users in order to approach the sum-rate capacity. We show that both ZFB and RKI outperform SU-MIMO in a cellular downlink scenario. when many mobile users are present.  相似文献   

14.
Full‐duplex (FD) mode of communication with efficient transmission scheme is a promising approach for 5G wireless systems by improving the spectral efficiency. This can be attained by making use of various precoding approaches. We propose a new co‐channel interference (CCI)‐aware improvement to signal‐to‐leakage‐and‐noise ratio (SLNR) technique and a suppression filter at the receiver to whiten the interference for the downlink channel. As well, for the uplink (UL) communication, we propose a self‐interference (SI)‐aware enhancement to SLNR scheme and designing a precoder using self‐interference plus noise covariance matrix. The total spectral efficiency is obtained from the sum‐rates of both downlink and uplink communication systems. Simulation results verify that the spectral efficiency (SE) of FD using the proposed scheme performs well relative to the half‐duplex system for all Rician factor and for small powers at the base station (BS) and UL communication channel users. Moreover, as the number of users grows, which entails that as the number of receiving antennas greater than the number of antennas at the BS the SLNR scheme still works, nonetheless, zero‐forcing (ZF) and block‐diagonalization (BD) precoding schemes failed. This is due to the fact that designing a precoder based on SLNR scheme supports multiple numbers of antennas at the base station and users compared with ZF and BD by compromising the interference and noise. However, for the cases of ZF and BD approaches failed due to both schemes require the number of transmit antennas at the BS to be larger than the sum of the receiving antennas at all users.  相似文献   

15.
In this paper, we propose two novel user selection algorithms for multiuser multiple‐input and multiple‐output downlink wireless systems, in which both a base station (BS) and mobile stations (MSs) are equipped with multiple antennas. Linear transmit beamforming at the BS and receive combining at the MSs are used to avoid interference between users and find a better sum‐rate capacity performance. An optimal technique for selecting users would entail an exhaustive search, which in practice becomes computationally complex for a realistic number of users. Suboptimal algorithms with low complexity are proposed for a coordinated beamforming scheme. Simulation results show that the performance of the proposed algorithms is better than that provided by previous algorithms and is very close to an optimal approach with reduced complexity.  相似文献   

16.
We present a transmit diversity technique for the downlink of (wideband) direct-sequence (DS) code division multiple access (CDMA) systems. The technique, called space-time spreading (STS), improves the downlink performance by using a small number of antenna elements at the base and one or more antennas at the handset, in conjunction with a novel spreading scheme that is inspired by space-time codes. It spreads each signal in a balanced way over the transmitter antenna elements to provide maximal path diversity at the receiver. In doing so, no extra spreading codes, transmit power or channel information are required at the transmitter and only minimal extra hardware complexity at both sides of the link. Both our analysis and simulation results show significant performance gains over conventional single-antenna systems and other open-loop transmit diversity techniques. Our approach is a practical way to increase the bit rate and/or improve the quality and range in the downlink of either mobile or fixed CDMA systems. A STS-based proposal for the case of two transmitter and single-receiver antennas has been accepted and will be included as an optional diversity mode in release A of the IS-2000 wideband CDMA standard  相似文献   

17.
We discuss a prefiltering technique for interference mitigation in the downlink of a time division duplex (TDD) multicarrier code-division multiple access (MC-CDMA) system. The base station (BS) is equipped with multiple transmit antennas, and channel state information (CSI) is obtained at the transmitter side by exploiting the channel reciprocity between uplink and downlink transmissions. The prefiltering coefficients are designed so as to minimize a proper cost function that depends on the signal-to-interference-plus-noise ratios (SINRs) at the mobile terminals (MTs). The resulting scheme allows using a simple despreading receiver, thereby eliminating the need for channel estimation and equalization. Numerical results show the advantages of the proposed scheme over some existing solutions.  相似文献   

18.
Using two receive antennas at a mobile phone improves downlink performance. But because of the correlation of the two antennas, using one of them to transmit in the uplink is a good performance-complexity tradeoff. This creates an interesting scenario of asymmetric channel state information at the transmitter in a time division duplex system, where the downlink channel coefficients related to one of the two receive antennas can be learned by the base station from the uplink training due to reciprocity. We provide near optimal transmitter design by obtaining upper and lower bounds of the downlink ergodic capacity.  相似文献   

19.
The effect of pilot sequence length on the asymptotic performance of the ergodic rate was investigated for the multiuser massive multiple-input multiple-output (MIMO) frequency division duplexing (FDD) downlink system.Firstly,the analytical expression of the ergodic rate was derived by using the principle of deterministic equivalence,based on which,it was discovered from the analytical results in two-fold that the normalized pilot sequence length (defined as the pilot sequence length divided by the number of BS antennas) tends to zero yet the rate was guaranteed to grow large without limit as long as the BS antenna number continues to increase,the rate saturates to a certain level if the BS antenna number becomes large with fixed pilot sequence length.Moreover,the pilot sequence length was optimized based on the sum-rate maximization within a finite channel coherence time,and a closed-form solution was deduced under a special correlated channel by means of Lambert W function.Simulation results validate the correctness of the theoretical analysis results and verify the effectiveness of the proposed closed-form solution of the optimal pilot sequence length.  相似文献   

20.
基于大规模天线的多用户 MISO 下行链路频谱效率分析   总被引:2,自引:0,他引:2  
在大规模天线时分双工通信系统中,分析了多用户MISO下行链路的频谱效率。假定用户数固定且基站天线数M无限增大,通过理论推导分析发现,当基站发送功率减小到单天线基站的1/M时,随着M的增加系统频谱效率趋于一个恒值;并且简单的预处理即可消除用户间干扰和快衰落的影响。虽然多小区系统会受导频污染的影响,致使小区间干扰不能被完全消除,但是降低后的发送功率可使系统由干扰受限转变为噪声受限。采用迫零单位预编码与采用最大比发送单位预编码的系统频谱效率极限表达式相同。最后给出采用空时分组码的多用户下行链路的频谱效率下限值,并通过仿真分析证实了以上结论的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号