首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The morphology of molded parts is the result of a competition between deformation rate, crystallization kinetics, relaxation times, and cooling. In this work, samples are solidified isothermally, so that the differences in morphology can be ascribed only to flow, and after a step shear, so that the effect of crystallinity on flow can be neglected. The resulting morphology is characterized, so that the data can be adopted for any further analysis. A comparison is conducted among the resulting structures and an attempt is made to identify a key parameter able to justify the differences. It is found that the main morphological features can be correlated to a single rheological parameter: the maximum attained value of molecular strain during the pulse of flow.

  相似文献   


2.
3.
The study of crystallization behavior and crystalline morphology of polymer melt under shear flow is of great interest due to the strong effect of flow field on the final properties of polymer products in the practical processing. In this respect, the shearing hot stage provides a unique tool which monitors sensitively the changes in crystalline structure induced by precise experimental conditions. Herein, the impacts of both melting temperature and shear rate on the crystallization behavior of isotactic polypropylene (iPP) melt are investigated. Under static conditions, there are only random spherulite structures. Once shear is involved, the cylindrite‐layers appear near both surfaces of the sample, which is consistent with the skin‐core structure in the injection molded parts. Meanwhile, the β‐crystals can be developed and are related to the molecular orientation, depending on the applied melting temperatures and shear rates. More interestingly, the crystallinity of β‐crystal in the pure iPP can reach 15%. The above results indicate that the melting temperature and shear rate are important factors in determining the β‐form crystal development of iPP matrix.  相似文献   

4.
The influence of Ca‐stearate‐coated CaCO3 and talc on the quiescent and flow‐induced crystallization of iPP is studied using different methods. Comparison of rheometry and DSC shows that rheometry is an interesting tool to monitor crystallization kinetics. It is observed that the Ca‐stearate coating degrades at commonly used annealing temperatures, influencing the crystallization behavior of the CaCO3‐containing polymer. WAXD indicates that the CaCO3 does not significantly influence the degree of crystallinity. As shear intensifies, both the pure and particle‐containing polymers crystallize faster; however, their behavior also becomes increasingly similar. There are indications that shear influences the organization of the CaCO3 aggregates.

  相似文献   


5.
研究了纳米氮化硅材料对于均聚聚丙烯等温结晶形态的影响。结果表明:1)纳米氮化硅作为成核剂效果明显,随着纳米氮化硅的加入,聚丙烯晶体尺寸减小,晶体完善程度下降;2)随着结晶时间延长,晶体尺寸有逐渐变大的趋势,晶体完善程度也在提高;3)随着结晶温度提高,晶体完善程度提高;4)在纳米氮化硅含量为2%(质量分数)时,晶体尺寸相对最小。  相似文献   

6.
采用熔融共混法制备了聚丙烯(PP)/硅灰石复合材料,并对其结晶行为进行研究。用X-射线衍射(XRD)研究了硅灰石的加入及类型对PP的晶体尺寸及类型的影响。结果显示,硅灰石的加入不改变PP的晶型,仍为α晶,而晶粒尺寸变小,表明硅灰石有异相成核作用。相比较而言,针状硅灰石比颗粒状硅灰石的异相成核作用更明显。采用差示扫描量热仪(DSC)在各种不同冷却速率下对复合材料的非等温结晶动力学过程进行研究,并用Jeziorny法来描述这些样品的非等温结晶过程。在相同的冷却速率下,半结晶时间(t′1/2)、结晶速率常数(Zc)等数据表明复合材料的结晶速率比纯PP的快,说明硅灰石具有异相成核作用,与颗粒硅灰石相比,针状硅灰石异相成核作用更明显。  相似文献   

7.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

8.
Melt blends of short aramid fibers (AF) and isotactic polypropylene (iPP) are subjected to shear at 145°C and the structural evolution and final morphology are examined by in situ synchrotron X‐ray scattering/diffraction and high‐resolution scanning electron microscopy, respectively. The results indicate that the presence of short AFs significantly enhances the crystallization of iPP. It is argued that shear flow in this system exerts a twofold orientating action, namely, on the bulk iPP molecules and on the short AFs. The resultant crystalline morphology reflects the combined effects of crystallization on orientated iPP molecules to facilitate a shish kebab morphology and at the interface of the aligned fibers, to form transcrystallinity. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1113–1118, 2005  相似文献   

9.
Summary: The presence of silver nanoparticles (0.01–5 wt.‐%) increased the crystallization temperature of isotactic poly(propylene) (iPP) (e.g., a 5 wt.‐% content increases the temperature by ca. 7 °C) and produced a sharper crystalline peak. It had little effect on the melt rheology of the nanocomposites. The shear‐induced crystallization behavior of iPP was accelerated with increasing Ag content and imposed frequency. In addition, the promoting effect of Ag nanoparticles on the overall crystallization behavior was more notable at 140 °C than at 130 °C. The wide‐angle X‐ray diffraction scans of iPP nanocomposites with 5 wt.‐% Ag crystallized at 130 °C clearly presented another peak at a 2θ value of 15.8°, which corresponded to a β‐form crystal. The nanocomposites with 5 wt.‐% Ag crystallized at 130 °C gave double melting peaks at 154 and 166 °C. On the other hand, the samples crystallized at 140 °C produced two melting peaks at 166 and 172 °C. The introduction of as much as 0.1 wt.‐% of Ag nanoparticles increased both the tensile strength and elongation at break, but subsequent further addition caused a decrease. In addition, iPP nanocomposites with more than 1 wt.‐% Ag exhibited a higher modulus than pure iPP.

Time dependence of G′ of iPP and iPP/Ag nanocomposites at 130 °C at ω = 1 rad · s?1.  相似文献   


10.
利用偏光显微镜观察了等规聚丙烯(iPP)在透明成核剂TM-3作用下的等温结晶形态,并与普通成核剂苯甲酸钠的影响作了对比。结果表明:等温和等成核剂含量条件下,含有TM-3样品的最佳结晶完善程度出现在结晶时间为10h时;其他条件相同时,TM-3/iPP样品的最佳结晶完善程度出现在140℃;而TM-3/iPP样品的结晶完善程度在成核剂含量为0.3%(质量分数)时最好。作为一种新型成核剂,TM-3的成核机理不再是简单的异相成核,而是提供少量而有效的生长点,使PP链段进行附着生长。结果证实,TM-3具有明显促进iPP球晶生长的能力。  相似文献   

11.
A rigid assembly of alginates is formed in aqueous media primarily via hydrogen bonding between guluronic units. A flow of aqueous alginate solution in a co‐flow capillary can form alginate gel fibers by contact with Ca2+ ions in sheath flow. Mixing with polyols [e.g., polyethylene glycol (PEG)] facilitates the shaping of the alginate assembly because PEG disrupts the assembly of the extended alginate chains to instead form alginate–PEG complexes that exhibit shear‐thinning behavior. The shear‐induced fibrous domains of the globular alginate–PEG complexes can be partitioned by a PEG‐rich phase, resulting in multiple parallel alginate gel filaments when the strong ionic‐field‐induced PEG‐rich phase is adjusted and an alginate–PEG complex phase is used as the aqueous two‐phase separation system.  相似文献   

12.
通过差示扫描量热仪(DSC)和X射线衍射分别研究了二氧化硅(SiO2)粒子填充等规聚丙烯(iPP)和共聚聚丙烯(co-PP)复合材料的结晶行为和晶体结构。DSC分析结果表明:由于异相成核作用,SiO2粒子提高了iPP的结晶温度,缩短了半结晶期;由于SiO2粒子的表面积大,表面能高,能够将co-PP分子链上的低等规度的链段吸附到填料表面,因而co-PP分子链的运动能力降低,结晶能力下降,导致co-PP的结晶温度大大下降,半结晶期延长。X-射线衍射分析结果表明:SiO2的加入抑制了iPP中β晶的结晶,而对co-PP中各α晶的相对含量影响不大。  相似文献   

13.
The influence of γ‐quinacridone as a β‐crystal nucleating agent in injection molded isotactic polypropylene (iPP) is discussed. Samples are injection molded and characterized via polarized‐light optical microscopy and X‐ray diffraction. Mold‐filling simulation is used to understand the shear and cooling processes during sample preparation. The cooling rate associated with the quench near the mold wall is estimated to be greater than 600 K s?1 using simulation, confirming previous studies that β‐crystal growth is not supported at that cooling rate. The non‐nucleated samples form β‐crystals at a distance of 100–300 µm from the skin and in the core of the sample, which is not expected based on quiescent cooling data. Since the mold‐filling simulation does not predict shear in the core, the formation of the β‐crystals formed in this region is attributed to shear‐induced crystallization effects in the injection unit of the molding machine that are not modeled in flow simulation, as they are typically excluded from any molding simulation analysis. This “melt‐memory” effect has shown to be significant, and it is suggested that the prediction of final properties of injection moldings requires understanding and knowledge of the entire shear history of the material including that of the injection unit.  相似文献   

14.
A set of amorphous poly[ethylene‐co‐(1,4‐cyclohexanedimethylene terephthalate)] (PECT) copolymers containing 25 and 30% of 1,4‐cyclohexane dimethylene (CHDM) units and small amounts of branching agent pentaerythritol (PER) is investigated. The level of long chain branching was estimated by analyzing the positive deviation from law. Branching also produced melt elasticity enhancement which is desirable for certain processing methods. Capillary extrusion experiments at 180 °C generated flow‐induced crystallization in PECT containing 25% of CHDM. Crystallization increased with the amount of PER added, which was explained by the favorable effect of branching to increase elongational rate at the entrance of the capillary. Linear and branched PECTs containing 30% of CHDM did not crystallize.

  相似文献   


15.
The influence of nucleating agents (AClyn®, Surlyn® and sodium benzoate (SB)) alone and together with nucleating promoter (Ceraflour® 993 and Ceraflour® 991 and poly(1,4‐butylene sebacate)) on the crystallization and morphology of poly(ethylene 2,6‐naphthalene dicarboxylate) (PEN) was investigated by means of differential scanning calorimeter, polarized optical microscopy and small angle light scattering. It was revealed that AClyn, Surlyn and SB effectively accelerate nucleation and crystallization of PEN with increasing the ratio of nucleating agent up to 1 wt.‐%. A combination of nucleating agent and nucleating promoter leads to further increase in crystallization rate at low temperature, but only a slight change at high temperature. Hedrites were obtained in pure PEN and the addition of SB and Ceraflour 993 produces small crystals with poor perfection upon crystallization in high temperature region. When crystallization temperature was below 210 °C, spherulites were observed in pure PEN and also in the samples of PEN/Ceraflour 993 and PEN/SB but with smaller size.

Crystal morphology of PEN crystallized at 240 °C for 40 min.  相似文献   


16.
利用偏光显微镜观察了聚丙烯共聚物(CPP)在透明成核剂TM-3作用下的等温结晶形态。结果表明:随结晶时间延长,CPP的球晶尺寸变大,形态也趋于完善;结晶温度并非越高越有利,CPP样品在140℃的结晶形态最好;球晶尺寸随TM-3含量提高而有所减小,但含有TM-3的CPP样品能够形成比CPP本体更大、更完善的球晶。TM-3在CPP结晶过程中提供了少量而有效的晶核,使丙烯链段能够附着在上面进行生长。  相似文献   

17.
A new mechanochemical treatment was performed on cellulose with the objective of modifying its morphology, reducing its crystallinity, and enabling better dissolution. Cellulose treated with N,N′‐dimethylacetamide (DMAc)/lithium chloride (LiCl) was subjected to shear with natural rubber as the carrier and shear‐transfer medium. When cellulose was subjected to such a mechanochemical treatment, significant changes in its surface morphology and a decrease in crystalline index were observed. The dissolution of the mechanochemically treated cellulose samples in DMAc/LiCl was found to be better compared with the dissolution of samples subjected to either mechanical shear or the chemical action of DMAc/LiCl independently. Chemical interactions between DMAc/LiCl and cellulose were enhanced synergistically under shear‐induced deformation. When shear alone was used in the absence of a DMAc/LiCl treatment, changes in the morphology, crystalline index, and dissolution were found to be negligible. The shear‐induced cellulose samples were characterized with Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44809.  相似文献   

18.
Starches of different granule sizes, including corn, rice, and amaranth starches, were used to prepare starch‐filled polypropylene (PP) and the effect of starch granule size on crystallization behavior PP was investigated. Differential scanning calorimetry and scanning electron microscopy were used to monitor the energy changes of the crystallization of the melt and to characterize the morphology of PP/starch composites, respectively. Little interaction was observed between starch and PP despite the difference in starch granule size. The crystallization temperature of PP decreased with the addition of starch and this decrease became more apparent with increasing starch granule size. During nonisothermal crystallization, the dependency of the relative degree of crystallinity on time was described by the Avrami equation. The addition of starch decreased the overall crystallization rate of PP, which was attributed to an increase in the activation energy of crystallization under nonisothermal conditions according to the Kissinger equation. An increase in starch granule size of starch would increase the crystallization activation energy of PP and consequently decrease its crystallization rate. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 484–492, 2004  相似文献   

19.
Molecular weight of isotactic polypropylene (iPP) and concentration of multi-walled carbon nanotubes (MWCNT) effects on the morphology, thermal stability, and electrical conductivity for iPP/MWCNT nanocomposites were evaluated. Nanocomposites were prepared by solution mixing followed by non-isothermal crystallization from the melt. The samples were characterized by different physical-chemical techniques. Electrical conductivity was obtained from electrical resistance measured using a source meter. It was determined that the morphology of the nanocomposites shows a change from spherulitic to fibrillar to undefined depending on the molecular weight of iPP and concentration of MWCNT. Morphology was correlated with thermal stability and electrical conductivity.  相似文献   

20.
Poly(ethylene‐co‐octene) (PEOc) has been shown to provide a high toughening contribution to isotactic polypropylene (iPP). The theoretical modeling of flow‐induced crystallization (FIC) of blends of iPP and PEOc is not much reported in the literature. The aim of the present work is to clarify the FIC of iPP upon addition of PEOc in terms of theoretical modeling. The crystallization of iPP and PEOc blends in flow is simulated by a modified FIC model based on the conformation tensor theory. Two kinds of flow fields, shear flow and elongational flow, are considered in the prediction to analyze the influence of flow field on the crystallization kinetics of the polymer. The simulation results show that the elongation flow is much more effective than shear flow in reducing the dimensionless induction time of polymer crystallization. In addition, the induction time of crystallization in the blends is sensitive to the change of shear rate. In comparison with experimental data, the modified model shows its validity for the prediction of the induction time of crystallization of iPP in the blends. Moreover, the simulated relaxation time for the blends becomes longer with increasing percentage of PEOc in the blends. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号