首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was demonstrated that R 2R 4 saturated monohydric alcohols can be synthesized from CO and H2 in the presence of Fe catalysts containing a carbon support of the Sibunit type with granule sizes of 3–5, 1–2, and 0.05–0.1 mm in a fixed-bed reactor at 3 MPa and 240–300°C. It was found that the activity of Fe/Sibunit catalysts and their selectivity for the formation of liquid synthetic products increased with the size of granules and the amount of iron. The catalysts make it possible to obtain fatty alcohols, in which the fraction of R 2R 4 alcohols is as high as 75%, in yields to 56 g/m3.  相似文献   

2.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

3.
The possibility of intensification of ignition of a methane-oxygen mixture in a supersonic flow behind the front of an oblique shock wave by means of excitation of O2 molecules to the states a 1Δg and b 1Σg+ in an electric discharge is discussed. Through numerical simulations, activation of O2 molecules by an electric discharge is demonstrated to speed up chain reactions in the CH4-O2 mixture and to reduce the induction-zone length. Even a small amount of energy input to O2 molecules in the discharge (≈3·0−2 J/cm3) can reduce the ignition-delay length by a factor of hundreds and initiate combustion at distances of ≈1 m from the discharge zone at comparatively low temperatures of the gas behind the front (≈1000 K) and moderate pressures (≈105 Pa). Excitation of O2 molecules by an electric discharge is much more efficient than simple heating of the mixture. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 3, pp. 3–16, May–June, 2008.  相似文献   

4.
The nanostructured solid solution Mn0.5Ce0.5O2 is synthesized to develop effective noble metal free catalysts for the detoxification of technogenic contaminants. Its chemical and phase compositions and textural characteristics are studied by differential thermal analysis, X-ray diffraction analysis, laser mass spectrometry, and low-temperature nitrogen adsorption. The activity of the solid solution in the oxidation of carbon monoxide is determined by the flow method within a temperature range of 20–300°C at atmospheric pressure, a gas hourly space velocity of 1800 h−1 for the following gas mixture composition, vol %: CO, 3.6; O2, 8.0; N2, balance. The activity of Mn0.5Ce0.5O2 is shown to be appreciably higher than the activity of MnOx and CeO2, and the temperature of 100% conversion is 92, 120, and 210°C, respectively. Using the solid solution as a support and the technique of impregnation, we synthesize the nanostructured catalysts Cu/Mn0.5Ce0.5O2 and Ag/Mn0.5Ce0.5O2, which manifest high activity in the oxidation of carbon monoxide: the temperature of 100% conversion is 77 and 85°C, respectively. The new catalysts could be of interest for the purification of industrial and motor vehicle wastes.  相似文献   

5.
The electrochemical oxidation of ethanol at Sn(1−x)Ir x O2 electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L−1 HClO4 solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon–carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.  相似文献   

6.
In order to better understand the chemistry involved during the combustion of diesel fuel components, the structure of a laminar lean premixed methane flame doped with indane has been investigated. This flame contains 7.1% (molar) of methane, 36.8% of oxygen, and 0.90% of indane, corresponding to an equivalence ratio of 0.74 and a C9H10/CH4 ratio of 12.75%, with argon used as a dilutant. The flame has been stabilized on a burner at a pressure of 6.7 kPa, with the gas velocity at the burner exit equal to 49.2 cm/sec at 333 K. Quantified species include usual methane combustion products C0–C2, but also eleven C3–C5 hydrocarbons and three C1–C3 oxygenated compounds, as well as 17 aromatic products, namely benzene, toluene, phenylacetylene, styrene, ethylbenzene, xylenes, trimethylbenzenes, ethyltoluenes, indene, methylindane, methylindene, naphthalene, phenol, benzaldehyde, and benzofuran. The temperature has been measured by a PtRh(6%)-PtRh(30%) thermocouple settled inside the enclosure: from 800 K close to the burner up to 2000 K in the burned gases.  相似文献   

7.
Experiments and calculations have been applied to the structure of the triple eutectic system SiC–W2B5–LaB6(T eu = 1900 ± 40°C), composition in mol.%: 10 LaB6, 44 SiC, 46 W2B5, error ±2–3%, which opens up prospects for making ceramic materials for various purposes.  相似文献   

8.
Comparative characteristics are presented for the physicomechanical properties and oxidation resistance of refractory materials of Al2O3–Si3N4–C composition based on an ACPB for the original materials (fired at 1400°C) and after impregnation with a sol-gel composition and heat treatment at 800°C. Areduction in material porosity, increase in strength and reduction in carbon burn-off are due to development of a glassy phase in the pore space and on graphite flakes due to SiO2formation with thermal destruction of the organosilicon substance.  相似文献   

9.
Oxygen-enriched carbon dioxide stream with oxygen concentration higher than 20 vol% was produced continuously by using a Co-based oxygen carrier packed in two parallel fixed-bed reactors operated in a cyclic manner. Oxygen was absorbed by the oxygen carrier with air being fed. An oxygen-enriched carbon dioxide stream was obtained when the fixed-bed was regenerated with carbon dioxide as a purge gas. Multiple absorption and desorption cycles indicated that the Co-based oxygen carrier had high cyclic stability. XRD analysis determined the absorbed and desorbed products were Co3O4 and CoO, respectively. The TGA results indicated that Co-based oxygen carrier did not react with NO or SO2 during the desorption stage. This Co-based oxygen carrier offers potential for applications in the O2-CO2 production for the oxy-fuel coal combustion process. This work was presented at the 7 th Korea-China Workshop on Clean Energy Technology held at Taiyuan, China, July 25–28, 2008.  相似文献   

10.
Zeolite Mazzite (MAZ) analogue was synthesized directly using piperazine as a structure directing agent. The reactive gel composition used was (5.0–7.0) piperazine:(6.0–7.0) Na2O:Al2O3:20.0SiO2:400H2O. Using this composition, the reaction time was shortened greatly to 4 days and the crystallization time was reduced as well. The DTA data showed that piperazine, in as-synthesized zeolite omega decomposed easily. The decomposition of the piperazine occurred at 400–480°C. NH3-TPD analysis proved that zeolite H-omega from piperazine had strong surface acidity with ammonia desorption temperature up to 590°C.  相似文献   

11.
Biocompatible composites (Ti, Ta)C x + Ca3(PO4)2 for deposition of nanofilms onto load-bearing implants by ion-plasma sputtering were prepared from Ti + Ta + C + Ca3(PO4)2 mixtures by forced SHS compaction. The effect of Ta + C addition to green mixtures (characterized by parameter z) on the structure/phase formation in combustion products was explored. The addition of tantalum and carbon was found to have little or no influence on the burning velocity U and combustion temperature T c. Two thermal spikes exhibited by thermograms were associated with the occurrence of two consecutive reactions leading to formation of titanium and tantalum carbides. With increasing z, the grain size of (Ti, Ta)C was found to diminish, its relative density to decrease, while the hardness to markedly grow.   相似文献   

12.
The catalytic properties of Ni/Al2O3 composites supported on ceramic cordierite honeycomb monoliths in oxidative methane reforming are reported. The prereduced catalyst has been tested in a flow reactor using reaction mixtures of the following compositions: in methane oxidation, 2–6% CH4, 2–9% O2, Ar; in carbon dioxide and oxidative carbon dioxide reforming of methane, 2–6% CH4, 6–12% CO2, and 0–4% O2, and Ar. Physicochemical studies include the monitoring of the formation and oxidation of carbon, the strength of the Ni-O bond, and the phase composition of the catalyst. The structured Ni-Al2O3 catalysts are much more productive in the carbon dioxide reforming of methane than conventional granular catalysts. The catalysts performance is made more stable by regulating the acid-base properties of their surface via the introduction of alkali metal (Na, K) oxides to retard the coking of the surface. Rare-earth metal oxides with a low redox potential (La2O3, CeO2) enhance the activity and stability of Ni-Al2O3/cordierite catalysts in the deep and partial oxidation and carbon dioxide reforming of methane. The carbon dioxide reforming of methane on the (NiO + La2O3 + Al2O3)/cordierite catalyst can be intensified by adding oxygen to the gas feed. This reduces the temperature necessary to reach a high methane conversion and does not exert any significant effect on the selectivity with respect to H2.  相似文献   

13.
New data are obtained on dynamic characteristics of phase formation in the course of alumothermal reaction with participation of melts by using video filming and local pyrometry of the combustion wave of the FeO-Al-Al2O3 powdered system and by studying quenched products. The capillary mechanism of convective processes at the stages of reactive conversion, segregation of the oxide and metal melts, and formation of the porous product of interaction is studied. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 1, pp. 80–84, January–February, 2008.  相似文献   

14.
Fractionation by supercritical carbon dioxide (SC−CO2) might be a way to purify used frying oils, since a selective separation of the oil components based on their polarity and M.W. can be attained. In this work, we studied the purification of peanut oil used for frying by SC−CO2 continuous fractionation in a packed column. The influence of pressure (15–35 MPa) and temperature (25–55°C) on the yield and on the composition of products was determined. The composition of the top and bottom products was evaluated by using size-exclusion chromatography and other accepted chemical methods. Process conditions were selected to separate TG from degraded compounds. Experimental results indicated that the operating conditions leading to maximal TG recovery in the extract were 35 MPa, 55°C, and a solvent-to-feed ratio of 53. By operating at these conditions, it was possible to recover 97% of the TG placed on the column and about 52% by weight of the used frying oil. The composition of the purified top stream was very similar to that of fresh frying oil.  相似文献   

15.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

16.
The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.  相似文献   

17.
High quality crednerite CuMnO2 was prepared by solid state reaction at 950 °C under argon flow. The oxide crystallizes in a monoclinically distorted delafossite structure associated to the static Jahn–Teller (J–T) effect of Mn3+ ion. Thermal analysis showed that it converts reversibly to spinel Cu x Mn3−x O4 at ~420 °C in air and further heating reform the crednerite above 940 °C. CuMnO2 is p-type, narrow semiconductor band gap with a direct optical gap of 1.31 eV. It exhibits a long-term chemical stability in basic medium (KOH 0.5 M), the semi logarithmic plot gave an exchange current density of 0.2 μA cm−2 and a corrosion potential of ~−0.1 VSCE. The electrochemical oxygen insertion/desinsertion is evidenced from the intensity–potential characteristics. The flat band potential (V fb = −0.26 VSCE) and the holes density (N A  = 5.12 × 1018 cm−3) were determined, respectively, by extrapolating the curve C 2 versus the potential to the intersection with C 2  = 0 and from the slope of the Mott–Schottky plot. From photoelectrochemical measurements, the valence band formed from Cu-3d wave function is positioned at 5.24 ± 0.02 eV below vacuum. The Nyquist representation shows straight line in the high frequency range with an angle of 65° ascribed to Warburg impedance originating from oxygen intercalation and compatible with a system under mass transfer control. The electrochemical junction is modeled by an equivalent electrical circuit thanks to the Randles model.  相似文献   

18.
A new wave-transparent composite reinforced by silica fibers with a hybrid matrix comprising BN and Si3N4 was prepared by precursor infiltration and pyrolysis, and it was heat-treated at elevated temperatures. The variations of the composite during heat treatments were characterized and investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The as-received composite exhibits good mechanical properties, and it is almost amorphous. When treated at 1600°C, it turned brittle, and silica fibers in it were fused; the composite showed a good crystalline form. When treated at 2100°C, the composite broke into pieces, and the composition showed only BN. Si3N4 was decomposed, and silica fibers were volatilized. The presence of BN probably affected the phase transitions of silica fibers. __________ Translated from Novye Ogneupory, No. 8, pp. 49–52, August 2007.  相似文献   

19.
Experiments on preparation of mica/Fe3O4 pearlescent pigment were performed to discuss influences of several crucial parameters on final products. The samples were characterized by XRD, HRSEM, FTIR and color measurement, the content of Fe3O4 on the mica surface was also analyzed by XPS. It was found that the smoothness, compactness and colour deepness of the coating were influenced by different pH values and temperatures. The optimum preparation parameters of mica/Fe3O4 pearlescent pigment were obtained: the value of pH ≥ 9.2; the concentration of sodium hydroxide was 0.5 mol/l; the concentration ratio of Fe3+ to Fe2+ was 1.6 : 1; the velocity of magnetic stirring was 138 ≤ v ≤ 151 r/min; reaction temperature was 70–80°C; calcination temperature was 350°C and calcination time was 3 h.  相似文献   

20.
The processes of phase formation in the Nd2O3-TiO2-Na2CO3 system have been investigated in the temperature range 500–1100°C. The mechanism of the high-temperature solid-phase reaction of formation of the complex oxide Na2Nd2Ti3O10 has been studied. It has been established that the Na2Nd2Ti3O10 compound is formed from the intermediate product Na0.5Nd0.5TiO3 with a perovskite structure in the temperature range 830–890°C and from the NaNdTiO4 oxide with a perovskite-like layered structure in the temperature range 960–1100°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号