首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ti3SiC2 is synthesized by self-propagating high-temperature synthesis (SHS) of elemental titanium, silicon, and graphite powders. The reaction paths and structure evolution are studied in situ during the SHS of the 3Ti+Si+2C mixture by time-resolved X-ray diffraction coupled with infrared thermography. The proposed reaction mechanism suggests that Ti3SiC2 might be formed from Ti–Si liquid phase and solid TiC x . Finally, the effect of the powders starting composition on the Ti3SiC2 synthesis is studied. For the investigated initial mixtures, TiC x is always formed as a major impurity together with the Ti3SiC2 phase.  相似文献   

2.
Formation of titanium silicon carbide (Ti3SiC2) by mechanical alloying (MA) of Ti, Si, and C powders at room temperature was experimentally investigated. A large amount of granules less than 5 mm in size, consisting of Ti3SiC2, smaller TiC particles, and other silicides, have been obtained after ball milling for only 1.5 h. The effect of excess Si in the starting powders on the formation of Ti3SiC2 was studied. The formation mechanism of Ti3SiC2 was analyzed. It is believed that a mechanically induced self-propagating reaction is ignited during the MA process. A possible reaction mechanism was proposed to explain the formation of the final products.  相似文献   

3.
Composites in the SiC–TiC–Ti3SiC2 system were synthesized using reactive hot pressing at 1600°C. The results indicate that addition of Ti3SiC2 to SiC leads to improved fracture toughness. In addition, high microhardness can be retained if TiC is added to the material. The best combination of properties obtained in this study is K I c =8.3 MPa·m1/2 and H v=17.6 GPa. The composition can be tailored in situ using the decomposition of Ti3SiC2. Ti3SiC2 decomposed rapidly at temperatures above 1800°C, but the decomposition could be conducted in a controlled manner at 1750°C. This can be used for synthesis of fully dense composites with improved properties by first consolidating to full density a softer Ti3SiC2-rich initial composition, and then using controlled decomposition of Ti3SiC2 to achieve the desired combination of microhardness and fracture toughness.  相似文献   

4.
Ti/Si/2TiC powders were prepared using a mixture method (M) and a mechanical alloying (MA) method to fabricate Ti3SiC2 at 1200°–1400°C using a pulse discharge sintering (PDS) technique. The results showed that the Ti3SiC2 samples with <5 wt% TiC could be rapidly synthesized from the M powders; however, the TiC content was always >18 wt% in the MA samples. Further sintering of the M powder showed that the purity of Ti3SiC2 could be improved to >97 wt% at 1250°–1300°C, which is ∼200°–300°C lower than that of sintered Ti/Si/C and Ti/SiC/C powders using the hot isostatic pressing (HIPing) technique. The microstructure of Ti3SiC2 also could be controlled using three types of powders, i.e., fine, coarse, or duplex-grained, within the sintering temperature range. In comparison with Ti/Si/C and Ti/SiC/C mixture powders, it has been suggested that high-purity Ti3SiC2 could be rapidly synthesized by sintering the Ti/Si/TiC powder mixture at relatively lower temperature using the PDS technique.  相似文献   

5.
The conditions necessary for synthesizing Al4SiC4 from mixtures of aluminum, silicon, and carbon and kaolin, aluminum, and carbon, as starting materials, were examined in the present study. The standard Gibbs energy of formation for the thermodynamic reaction SiC( s ) + Al4C3( s ) = Al4SiC4( s ) changed from positive to negative at 1106°C. SiC and Al4C3 formed as intermediate products when the mixture of aluminum, silicon, and carbon was heated in argon gas, and Al4SiC4 then formed by reaction of the SiC and Al4C3 at >1200°C. Al4C3, SiO2, Al2O3, SiC, and Al4O4C formed as intermediate products when the mixture of kaolin, aluminum, and carbon was heated under vacuum, and Al4SiC4 formed from a reaction of those intermediate products at >1600°C.  相似文献   

6.
The reactive sintering of 3Ti/SiC/C to form the layered ternary carbide Ti3SiC2 was studied in situ by time-resolved neutron powder diffraction. A number of intermediate processes occur during the synthesis beginning with the α-β transition in Ti. Concurrent with the α-β transition, two intermediate phases, TiC x and Ti5Si3C x ( x ≤ 1), form. These phases account for almost the entire sample in the range 1500–1600°C beyond which they react with each other and a small amount of free C to form the product phase Ti3SiC2.  相似文献   

7.
Ti3SiC2 has many salient properties including low density, high strength and modulus, damage tolerance at room temperature, good machinablity, and being resistant to thermal shock and oxidation below 1100°C. However, the low hardness and poor oxidation resistance above 1100°C limit the application of this material. The poor oxidation resistance at temperatures above 1100°C was because of the absence of protective layer in the scale and the presence of TiC impurity phase. TiC impurity could be eliminated by adding a small amount of Al to form Ti3Si(Al)C2 solid solutions. Although the high-temperature oxidation resistance was significantly improved for the Ti3Si(Al)C2 solid solutions, the strength at high temperatures was lost. One important way to enhance the high-temperature strength is to incorporate hard ceramic particles like SiC. In this article, we describe the in situ synthesis and simultaneous densification of Ti3Si(Al)C2/SiC composites using Ti, Si, Al, and graphite powders as the initial materials. The effect of SiC content on high-temperature mechanical properties and oxidation resistance were investigated. The mechanisms for the improved high-temperature properties are discussed.  相似文献   

8.
The effect of vacuum annealing on the thermal stability and phase transition of Ti3SiC2 has been investigated by X-ray diffraction (XRD), neutron diffraction, synchrotron radiation diffraction, and secondary ion mass spectroscopy (SIMS). In the presence of vacuum or a controlled atmosphere of low oxygen partial pressure, Ti3SiC2 undergoes a surface dissociation to form nonstoichiometric TiC and/or Ti5Si3C x that commences at ∼1200°C and becomes very pronounced at ≥1500°C. Composition depth profiling at the near surface of vacuum-annealed Ti3SiC2 by XRD and SIMS revealed a distinct gradation in the phase distribution of TiC and Ti5Si3C x with depth.  相似文献   

9.
In situ neutron diffraction at 0.9 s time resolution was used to reveal the reaction mechanism during the self-propagating high-temperature synthesis (SHS) of Ti3SiC2 from furnace-ignited stoichiometric 3Ti + SiC + C mixtures. The diffraction patterns indicate that the SHS proceeded in five stages: (i) preheating of the reactants, (ii) the α→β phase transformation in Ti, (iii) preignition reactions, (iv) the formation of a single solid intermediate phase in <0.9 s, and (v) the rapid nucleation and growth of the product phase Ti3SiC2. No amorphous contribution to the diffraction patterns from a liquid phase was detected and, as such, it is unlikely that a liquid phase plays a major role in this SHS reaction. The intermediate phase is believed to be a solid solution of Si in TiC such that the overall stoichiometry is ∼3Ti:1Si:2C. Lattice parameters and known thermal expansion data were used to estimate the ignition temperature at 923 ± 10°C (supported by the α→β phase transformation in Ti) and the combustion temperature at 2320 ± 50°C.  相似文献   

10.
Mechanical alloying (MA) has been used to synthesize Ti3SiC2 powder from the elemental Ti, Si, and C powders. The MA formation conditions of Ti3SiC2 were strongly affected by the ball size for the conditions used. MA using large balls (20.6 mm in diameter) enhanced the formation of Ti3SiC2, probably via an MA-triggered combustion reaction, but the Ti3SiC2 phase was not synthesized only by the MA process using small balls (12.7 mm in diameter). Fine powders containing 95.8 vol% Ti3SiC2 can be obtained by annealing the mechanically alloyed powder at relatively low temperatures.  相似文献   

11.
In this article, the first part of a two-part study, we report the reaction path and microstructure evolution during the reactive hot isostatic pressing of Ti3SiC2, starting with titanium, SiC, and graphite powders. A series of interrupted hot isostatic press runs have been conducted as a function of temperature (1200°–1600°C) and time (0–24 h). Based on X-ray diffractometry and scanning electron microscopy, at 1200°C, the intermediate phases are TiC x and Ti5Si3C x . Fully dense, essentially single-phase samples are fabricated in the 1450°–1700°C temperature range. The time-temperature processing envelope for fabricating microstructures with small (3–5 μm), large (∼200 μm), and duplex grains, in which large (100–200 μm) Ti3SiC2 grains are embedded in a much finer matrix, is delineated. The microstructure evolution is, to a large extent, determined by (i) the presence of unreacted phases, mainly TiC x , which inhibits grain growth; (ii) a large anisotropy in growth rates along the c and a directions (at 1450°C, growth normal to the basal planes is about an order of magnitude smaller than that parallel to these planes; at 1600°C, the ratio is 4); and (iii) the impingement of grains. Ti3SiC2 is thermally stable under vacuum and argon atmosphere at temperatures as high as 1600°C for as long as 24 h. The influence of grain size on the mechanical properties is discussed in the second part of this study.  相似文献   

12.
In this work, we report on the interdiffusion of Ge and Si in Ti3SiC2 and Ti3GeC2, as well as that of Nb and Ti in Ti2AlC and Nb2AlC. The interdiffusion coefficient, D int, measured by analyzing the diffusion profiles of Si and Ge obtained when Ti3SiC2–Ti3GeC2 diffusion couples are annealed in the 1473–1773 K temperature range at the Matano interface composition (≈Ti3Ge0.5Si0.5C2), was found to be given by
D int increased with increasing Ge composition. At the highest temperatures, diffusion was halted after a short time, apparently by the formation of a diffusion barrier of TiC. Similarly, the interdiffusion of Ti and Nb in Ti2AlC–Nb2AlC couples was measured in the 1723–1873 K temperature range. The D int for the Matano interface composition, viz. ≈(Ti0.5,Nb0.5)2AlC, was found to be given by
At 1773 K, the diffusivity of the transition metal atoms was ≈7 times smaller than those of the Si and Ge atoms, suggesting that the former are better bound in the structure than the latter.  相似文献   

13.
Ti3SiC2/HAp composites with different Ti3SiC2 volume fractions were fabricated by spark plasma sintering (SPS) at 1200°C. The effects of Ti3SiC2 addition on the mechanical properties and microstructures of the composites were investigated. The bending strength and fracture toughness of the composites increased with increasing of Ti3SiC2 content, whereas the Vickers hardness decreased. The bending strength and fracture toughness reached 252±10 MPa and 3.9±0.1 MPa·m1/2, respectively, with the addition of 50 vol% Ti3SiC2. The increases in the mechanical properties were attributed to the matrix strengthening and interactions between cracks and the Ti3SiC2 platelets.  相似文献   

14.
The 1100°C isothermal section and the isopleths at 5, 10, and 15 at.% C in the Ti–Si–C system were determined by DTA and XRD methods. Five invariant reactions (L (liquid) = Si + SiC + TiSi2 at 1330°C, L = TiSi + TiSi2+ Ti5Si3C x at 1485°C, L + Ti5Si3C x = Ti3SiC2+ TiSi2 at 1485°C, L + Ti3SiC2= TiSi2+ SiC at 1473°C, and L + TiC = bcc-(Ti) + Ti5Si3C x at 1341°C) were observed. The transition temperature for L + TiC = Ti3SiC2+ SiC was measured by the Pirani technique. Optimized thermodynamic parameters for the Ti–Si–C system were then obtained by means of the CALPHAD (calculation of phase diagrams) method applied to the present experimental results and reliable literature data. The calculations satisfactorily account for most of the experimental data.  相似文献   

15.
To evaluate the lubrication compatibility of SiC-reinforced Ti3SiC2-based composites, i.e., a Ti3SiC2/SiC composite, with water and alcohol, sliding experiments were conducted under dry condition and lubricated with water and C2H5OH. The friction and wear of the Ti3SiC2/SiC composite decreased in the order of dry condition, in water, and in C2H5OH. The worn surfaces indicated that oxide masses, which caused oxidation wear and abrasive wear, were formed by tribo-oxidation on the sliding surface under the dry condition and in water, while tribo-oxidation scarcely occurred in C2H5OH.  相似文献   

16.
Nanolaminates with a layered M N +1AX N crystal structure (with M: transition metal, A: group element, X: carbon or nitrogen, and N =1, 2, 3) offer great potential to toughen ceramic composites. A ternary Ti3AlC2 carbide containing ceramic composite was fabricated by three-dimensional printing of a TiC+TiO2 powder mixture and dextrin as a binder. Subsequent pressureless infiltration of the porous ceramic preform with an Al melt at 800°–1400°C in an inert atmosphere, followed by reaction of Al with TiC and TiO2 finally resulted in the formation of a dense multiphase composite of Ti3AlC2–TiAl3–Al2O3. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension. Rising R -curve behavior with increasing crack extension was observed, confirming the operation of wake-toughening effects on the crack growth resistance. Observations of crack/microstructure interactions revealed that extensive crack deflection along the (0001) lamellar sheets of Ti3AlC2 was the mechanism responsible for the rising R -curve behavior.  相似文献   

17.
The present contribution reports the unlubricated friction and wear properties of Ti3SiC2 against steel. The fretting experiments were performed under varying load (1–10 N) and the detailed wear mechanism is studied using SEM-EDS, Raman spectroscopy, and atomic force microscopy. Under the selected fretting conditions, Ti3SiC2/steel tribocouple exhibits a transition in friction as well as wear behavior with coefficient of friction varying between 0.5 and 0.6 and wear rate in the order of 10−5 mm3·(N·m)−1. Raman analysis reveals that the fretting wear is accompanied by the triboxidation with the formation of TiO2, SiO2, and Fe2O3. A plausible explanation for the transition in friction and wear with load is proposed.  相似文献   

18.
Tribological properties of Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites (10 and 20 vol% Al2O3) were investigated by using an AISI-52100 bearing steel ball dryly sliding on a linear reciprocating athletic specimen. The friction coefficients were found varying only in a range of 0.1 under the applied loads (2.5, 5, and 10 N), and the wear rates of the composites decreased with increasing Al2O3 content. The enhanced wear resistance is mainly attributed to the hard Al2O3 particles nail the surrounding soft matrix and decentrale the shear stresses under the sliding ball to reduce the wear losses.  相似文献   

19.
In this paper, we report a machinable Ti3SiC2/hydroxyapatite (HAp) composite prepared by spark plasma sintering. The experimental results of a drilling test demonstrated that the composites exhibit excellent machinability when the Ti3SiC2 content is higher than 20 vol%, which can be attributed to the improvement in the mechanical and machinable properties of the composites by addition of Ti3SiC2 phase, which possessess unique mechanical and machinable properties and energy-absorbing mechanisms. The superior mechanical and machinable properties of Ti3SiC2/HAp composites suggest that the composite system could be attractive for practical applications of novel biomaterials.  相似文献   

20.
Mechanical alloying (MA) synthesis of Ti3SiC2 from a stoichiometric elemental powder mixture of Ti, Si, and C was conducted by using a planetary mill with a specially designed MA jar, which enables the real-time measurement of temperature and gas pressure during the MA process. Sudden gas pressure and temperature rises were detected when the mixed powders were mechanically alloyed for a certain period, and consequently a large amount of Ti3SiC2 particles was synthesized. Using the Ti–Si–C system as an example, the present study confirmed the combustion reaction triggered by the ball-milling process for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号