首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
基于空气增湿-除湿海水淡化技术,采用热海水与空气逆流对喷的空气加湿器,设计了结合太阳能集热器的小型太阳能海水淡化系统。试验结果表明,该结构的空气加湿器具有很好的加湿效果,出口空气相对湿度可达到98%以上。当喷水温度为60℃、空气流量为11.8 L/s时,该小型海水淡化装置产水率可达3.42 kg/h。  相似文献   

2.
设计制作了一台多级迭盘式太阳能海水淡化装置。该装置通过折皱底面来强化凝结作用,利用与最下面一级相连的热管式真空管集热器供热,在天气晴朗时能够不需其他动力自动制取淡水,具有操作简单、运行可靠、维护费用低等特点。试验结果表明,该装置利用太阳能制取淡水的性能系数为1.01,是一种较理想的户用太阳能海水淡化装置。文章还对装置寿命期内的经济效益进行了分析。  相似文献   

3.
利用实际天气的太阳辐射值,根据一套低温四效太阳能海水淡化系统稳态实验数据,通过模拟计算,研究分析与该海水淡化系统匹配的太阳能集热系统参数,给出太阳能集热系统集热器面积和储热水箱容量、海水淡化系统启动和暂停温度等参数的最佳取值范围,计算了该装置的年淡水产量,为太阳能海水淡化装置的设计提供一种有效地方法.  相似文献   

4.
基于喷淋水自循环与太阳能加热空气的方法,设计一种加湿除湿型海水淡化装置。首先对装置的结构及原理进行说明,然后对装置各部分的能量平衡进行分析,最后实验研究装置集热及产水性能。从实验结果可知,淡化装置所匹配的太阳能空气集热器效率在37%~50%之间,在循环风量为164.21 m~3/h、海水喷淋速率为971 kg/h以及淡水喷淋速率为896 kg/h的条件下,装置最大半小时产水量为2.2 kg。此外,研究结果显示,因喷淋水自循环,喷淋速率的变化对装置产水量的影响较小。  相似文献   

5.
设计一种由平板太阳集热器和海水淡化单元组成的多效同轴竖管降膜蒸发式太阳能海水淡化装置。研究装置的能量流动情况,并在实际天气条件下对装置进行性能测试,给出该装置的产水量和运行温度随运行时间、辐照度的变化曲线。结果表明,装置在实际天气条件下,日产水量最高达到9.92 kg,最大产水速率为2.0 kg/h,是一种理想的太阳能海水淡化器。  相似文献   

6.
一种新型家用太阳能海水淡化装置   总被引:1,自引:1,他引:0  
设计了一种具有折皱底面的多级迭盘式家用太阳能海水淡化装置。该装置由热管式真空集热管和多级海水淡化器两部分组成。在实际天气条件下,对该装置性能进行了测试,给出了该装置每0.5 h的产水量、累计产水量以及各级水盘的水温随运行时间的变化曲线。实验结果表明,在测试当天累计太阳辐射量22.46 MJ/(m^2.d)条件下,该装置产水量可达9.34 kg/(m^2.d),单位太阳辐射能产水量为1.50 kg/kWh;该装置的性能系数达到0.956,是传统单级盘式太阳能蒸馏器性能系数的2.7倍。该装置使用简便,运行可靠,维护费用低,在淡水缺乏的岛屿或偏远的咸水湖地区,是一种较为理想的家用太阳能海水淡化装置。  相似文献   

7.
太阳能建筑供暖技术的研发在太阳能资源丰富的西藏自治区(下文简称为“西藏”)等地区具有潜在的实际应用价值。研发设计了一种太阳能空气集热器,并制造了该太阳能空气集热器样机;然后在拉萨市自然太阳光条件下(测试当日的太阳辐照度在161.8~1588.0 W/m2之间,均值为1316.3 W/m2),太阳能空气集热器采用跟踪太阳模式时对其集热性能进行了测试。测试结果表明:该太阳能空气集热器的进风口空气温度(即环境温度)均值为22.45℃,经过太阳能空气集热器被太阳辐射加热后,可产出温度在51~85℃之间、风量为150 m3/h的热空气,出风口空气温度均值达到68℃,最高值接近拉萨市水的沸点(86℃),表明该设备的集热效率高。研发设计的太阳能空气集热器在集热性能上具备实际应用价值。  相似文献   

8.
设计了一种多级满液型间接加热蒸发回热式太阳能海水淡化装置。装置中太阳能集热器与蒸发/冷凝部分通过热管联接为一整体,14个集热单元,分为7级;从第2级开始,均采用集热/蒸发/冷凝三位一体的单元,常压运行,不须使用真空泵。使用逐级降温回热法加强蒸汽的气化潜热回收利用,有效地提高了系统制水率和能量利用率。研究表明,在冬季运行工况下,装置的最高单位集热面积制水量为6.16 kg/m2,最大平均回热效率为65.83%。  相似文献   

9.
新型CPC热管式集热器的设计与模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于CPC型集热器的发展现状,设计出新型CPC热管式集热器.介绍了该集热器的聚光面和接收器的结构设计计算过程,并对集热器进行了集热分析.采用MATLAB建模仿真技术对该集热器进行建模和动态仿真来预测该新型CPC热管式集热器的运行情况,得出新型CPC热管式集热器的有效输出能量、出口温度、瞬时集热效率的变化图.通过试验研究证实了新型CPC热管式集热器可以产生蒸汽,可用于制冷,尤其是热源品位要求较高的氨吸收式制冷,同时还可用于汽轮机发电和太阳能海水淡化等场合.  相似文献   

10.
为了提高太阳能界面蒸发的蒸发效率,从改变结构设计和光热材料两个方面出发,设计了一种热空气吹掠型太阳能界面蒸发装置。该蒸发装置利用平板型太阳能空气集热器产生的高温空气吹过蒸发表面,加速界面蒸发;同时利用氧化石墨烯的性能优势,制备了氧化石墨烯/聚酰亚胺/聚四氟乙烯膜(GO/PI/PTFE)复合薄膜作为光热材料,以提高装置蒸发效率。最后通过实验对该蒸发装置的性能进行分析验证。研究结果表明:制备得到的GO/PI/PTFE复合薄膜具有更强的光吸收能力,且亲水性能更佳。在蒸发表面吹入速度为4 m/s、温度为65℃的热空气,太阳辐照度为1000 W/m2的条件下,在1800 s时,采用GO/PI/PTFE复合薄膜但无热风吹掠的蒸发装置对应的蒸发速率为1.22 kg/(m2·h),与纯水蒸发装置相比,蒸发速率提高了3.2倍,蒸发效率提高了59.5%;热空气吹掠型太阳能界面蒸发装置的蒸发效率为88.0%,高于纯水蒸发装置和无热空气吹掠的蒸发装置,与纯水蒸发装置相比,其蒸发速率提高了5.5倍,蒸发效率提高了68.0%。热空气吹掠可以提高蒸发量,进而提高蒸发装置的...  相似文献   

11.
The aim of this research is to experimentally study the efficiency of a new-design plate collector used to heat air in a new desalination humidification–dehumidification process. In fact, in such processes, the air solar collectors work at unusual experimental parameters (forced convection, elevated air humidity, high solar irradiation…). At these stressed experimental conditions, few published works are available in literature. Furthermore, the comparison of the efficiency of collectors running with normal air humidity content (about 10–20 g kg−1) and air of elevated humidity (20–50 g kg−1) were not yet published as our knowledge. In the present investigation, a new air solar plate collector was designed and developed for its use in a desalination process. Moreover, a characterization of such collector was performed under different experimental conditions. The effect of different parameters, namely: the solar radiation, the wind velocity, the ambient temperature, the air mass flow rate, the inlet air humidity and temperature, on the collector efficiency was also investigated. The collector was optimized for its use in a new solar desalination process. In fact, the air solar collector was designed in order to lower its economic cost making them applicable for water desalination.  相似文献   

12.
Recently the porous bilayer wood solar collectors have drawn increasing attention because of their potential application in solar desalination. In this paper, a thermodynamic model has been developed to analyze the performance of the wood solar collector. A modeling analysis has also been conducted to assess the performance and operating conditions of the multiple effect desalination (MED) system integrated with the porous wood solar collector. Specifically, the effects of operating parameters, such as the motive steam temperature, seawater flow rate, input solar energy and number of effects on the energy consumption for each ton of distilled water produced have been investigated in the MED desalination system combined with the bilayer wood solar steam generator. It is found that, under a given operating condition, there exists an optimum steam generation temperature of around 145°C in the wood solar collector, so that the specific power consumption in the MED system reaches a minimum value of 24.88 kWh/t. The average temperature difference is significantly affected by the solar heating capacity. With the solar capacity increasing from 50 kW to 230 kW, the average temperature difference increases from 1.88°C to 6.27°C. This parametric simulation study will help the design of efficient bilayer wood solar steam generator as well as the MED desalination system.  相似文献   

13.
The working principle and thermal performance of a new v-trough solar concentrator are presented in this paper. Compared with the common parabolic trough solar concentrators, the new concentrator has two parabolic troughs which form a V-shape with the focal line at the bottom of the troughs. This is beneficial for the installation and insulation of the receiver, and the shadow on the reflective surface is avoided. The new v-trough collector does not require high precision tracking devices and reflective material. And therefore the cost of the system could be significantly reduced. Various experimental tests were carried out both outdoor and indoor using different types of receiver tubes. The results show that the collector system can have thermal efficiency up to 38% at 100 °C operating temperature. System modelling was used to predict the rate of fresh water produced by four different solar collector systems which include both static and one-axis solar tracking technologies. Comparison of the solar collectors at different temperature ranges for humidification/dehumidification desalination process using specific air flow rate were considered. At each temperature range, suitable solar collectors were compared in the aspect of fresh water production and area of solar collector required. Results showed that the new v-trough solar collector is the most promising technology for small to medium scale solar powered water desalination.  相似文献   

14.
A numerical investigation of a humidification dehumidification desalination (HDD) process using solar energy is presented. The HDD system consists mainly of a concentrating solar water heating collector, flat plate solar air heating collector, humidifying tower and dehumidifying exchanger. Two separate circulating loops constitute the HDD system, the first for heating the feed water and the second for heating air. A mathematical model is developed, simulating the HDD system, to study the influence of the different system configurations, weather and operating conditions on the system productivity. The model validity is examined by comparing the theoretical and experimental results of the same authors. It is found that the results of the developed mathematical model are in good agreement with the experimental results and other published works. The results show also that the productivity of the unit is strongly influenced by the air flow rate, cooling water flow rate and total solar energy incident through the day. Wind speed and ambient temperature variations show a very small effect on the system productivity. In addition, the obtained results indicate that the solar water collector area strongly affects the system productivity, more so than the solar air collector area.  相似文献   

15.
文章设计了新型非晶硅太阳能PV/T空气集热器,该空气集热器能够解决传统太阳能PV/T热水器在高温波动情况下,晶硅电池热应力大的问题,同时避免了冬季管道发生霜冻的现象。文章通过实验对比,分析了非晶硅太阳能PV/T空气集热器、单独非晶硅光伏电池和传统太阳能空气集热器的能量效率和[火用]效率的差异。分析结果表明:非晶硅太阳能PV/T空气集热器的平均热效率为45.70%,比传统太阳能空气集热器的平均热效率降低了约25.88%;当空气质量流量增大至0.048 kg/s时,非晶硅太阳能PV/T空气集热器中的非晶硅光伏电池的平均电效率高于单独非晶硅光伏电池,它们的平均电效率分别为4.70%,4.54%;非晶硅太阳能PV/T空气集热器的总[火用]效率高于传统太阳能空气集热器的热[火用]效率和单独非晶硅光伏电池的电[火用]效率,非晶硅太阳能PV/T空气集热器总[火用]效率最大值为7.14%。文章的分析结果为非晶硅太阳能PV/T空气集热器的推广提供了参考。  相似文献   

16.
K. Zhani  H. Ben Bacha  T. Damak 《Energy》2011,36(5):3159-3169
This paper presents the modeling and the experimental validation of air and water solar collectors used in humidification-dehumidification (HDH) solar desalination unit. The solar desalination process is currently operating under the climatological conditions of Sfax (34 N, 10 E), Tunisia. To numerically simulate the air and water solar collectors, we have developed dynamic mathematical models of the solar collectors. The resulting distributed parametric systems of equations are transformed into a system of ordinary differential equations (ODEs) using the orthogonal collocation method (OCM). A comparison between numerical and experimental data was conducted. It was found that the two-temperature mathematical model describes more precisely the real behaviour of the water solar collector than the one-temperature mathematical model. It was also shown that the developed mathematical models are able to predict accurately the trends of the thermal characteristic of the water and air solar collectors. As a result, the proposed models can be used to size and test the behaviour of such a type of water and air solar collectors.  相似文献   

17.
Y.B. Assoa  C. Menezo  G. Fraisse  R. Yezou  J. Brau   《Solar Energy》2007,81(9):1132-1143
This work represents the second step of the development of a new concept of photovoltaic/thermal (PV/T) collector. This type of collector combines preheating of the air and the production of hot water in addition to the classical electrical function of the solar cells. The alternate positioning of the thermal solar collector section and the PV section permits the production of water at higher mean temperatures than most of existing hybrid collectors. These higher temperatures will allow the coupling of components such as solar cooling devices during the summer and obviously a direct domestic hot water (DHW) system without the need for additional auxiliary heating systems. In this paper, a simplified steady-state two-dimensional mathematical model of a PV/T bi-fluid (air and water) collector with a metal absorber is developed. Then, a parametric study (numerically and experimentally) is undertaken to determine the effect of various factors such as the water mass flow rate on the solar collector thermal performances. Finally, the results from an experimental test bench and the first simulation results obtained on full scale experiments are compared.  相似文献   

18.
Parabolic trough solar collector usually consists of a parabolic solar energy concentrator, which reflects solar energy into an absorber. The absorber is a tube, painted with solar radiation absorbing material, located at the focal length of the concentrator, usually covered with a totally or partially vacuumed glass tube to minimize the heat losses. Typically, the concentration ratio ranges from 30 to 80, depending on the radius of the parabolic solar energy concentrator. The working fluid can reach a temperature up to 400°C, depending on the concentration ratio, solar intensity, working fluid flow rate and other parameters. Hence, such collectors are an ideal device for power generation and/or water desalination applications. However, as the length of the collector increases and/or the fluid flow rate decreases, the rate of heat losses increases. The length of the collector may reach a point that heat gain becomes equal to the heat losses; therefore, additional length will be passive. The current work introduces an analysis for the mentioned collector for single and double glass tubes. The main objectives of this work are to understand the thermal performance of the collector and identify the heat losses from the collector. The working fluid, tube and glass temperature's variation along the collector is calculated, and variations of the heat losses along the heated tube are estimated. It should be mentioned that the working fluid may experience a phase change as it flows through the tube. Hence, the heat transfer correlation for each phase is different and depends on the void fraction and flow characteristics. However, as a first approximation, the effect of phase change is neglected. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号