首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In the paper we present a postprocessed type of a posteriori error estimate and a h-version adaptive procedure for the semidiscrete finite element method in dynamic analysis. In space the super-convergent patch recovery technique is used for determining higher-order accurate stresses and, thus, a spatial error estimate. In time a postprocessing technique is developed for obtaining a local error estimate for one step time integration schemes (the HHT-α method). Coupling the error estimate with a mesh generator, a h-version adaptive finite element procedure is presented for two-dimensional dynamic analysis. It updates the spatial mesh and time step automatically so that the discretization errors are controlled within specified tolerances. Numerical studies on different problems are presented for demonstrating the performances of the proposed adaptive procedure.  相似文献   

2.
This paper presents a novel method for error estimation and h-version adaptive mesh refinement for potential problems which are solved by the boundary element method (BEM). Special sensitivities, denoted as mesh sensitivities, are used to evaluate a posteriori error indicators for each element, and a global error estimator. A mesh sensitivity is the sensitivity of a physical quantity at a boundary node with respect to perturbation of the mesh. The element error indicators for all the elements can be evaluated from these mesh sensitivities. Mesh refinement can then be performed by using these element error indicators as guides.The method presented here is suitable for both potential and elastostatics problems, and can be applied for adaptive mesh refinement with either linear or quadratic boundary elements. For potential problems, the physical quantities are potential and/or flux; for elastostatics problems, the physical quantities are tractions/displacements (or tangential derivatives of displacements). In this paper, the focus is on potential problems with linear elements, and the proposed method is validated with two illustrative examples. However, it is easy to extend these ideas to elastostatics problems and to quadratic elements.The computing for this research has been supported by the Cornell National Supercomputer Facility.  相似文献   

3.
An adaptive mesh refinement (AMR) procedure is used in static thin shell analysis using triangular facet shell elements. The procedure described herein uses the h-version of adaptive refinement based on an error estimate determined by using the best guess values of bending moments and membrane forces obtained from a previous solution. It includes the use of a relaxation factor to achieve better convergence. Some examples are presented to illustrate this method. The results obtained are compared with those of uniform mesh refinement (UMR).  相似文献   

4.
A posteriori error estimates and adaptive mesh refinements are now on a rigorous mathematical foundation for linear, elliptic boundary-value problems of second order. Yet, for non-linear problems only a few results have been obtained till now. In this paper we consider as a non-linear model problem the two-dimensional fluid flow with free surface and show how results from linear a posteriori theory can be used to control the non-linear iteration and to refine the mesh adaptively. A numerical example shows that, similar to linear problems, considerable improvement of the accuracy is obtained by an adaptive mesh refinement and that the influence of singularities on the order of convergence disappears.  相似文献   

5.
Global and element residuals are introduced to determine a posteriori, computable, error bounds for finite element computations on a given mesh. The element residuals provide a criterion for determining where a finite element mesh requires refinement. This indicator is implemented in an algorithm in a finite element research program. There it is utilized to automatically refine the mesh for sample two-point problems exhibiting boundary layer and interior layer solutions. Results for both linear and nonlinear problems are presented. An important aspect of this investigation concerns the use of adaptive refinement in conjunction with iterative methods for system solution. As the mesh is being enriched through the refinement process, the solution on a given mesh provides an accurate starting iterate for the next mesh, and so on. A wide range of iterative methods are examined in a feasibility study and strategies for interweaving refinement and iteration are compared.  相似文献   

6.
Two practical and effective, hp-type, finite element adaptive procedures are presented. The procedures allow not only the final global energy norm error to be well estimated using hierarchic p-refinement, but in addition give a nearly optimal mesh. The design of this is guided by the local information computed on the previous mesh. The desired accuracy can always be obtained within one or at most two hp-refinements. The rate of convergence of the adaptive hp-version analysis procedures has been tested for some examples and found to be very strong. The presented procedures can easily be incorporated into existing p- or h-type code structures.  相似文献   

7.
This paper presents a p-version least-squares finite element formulation for unsteady fluid dynamics problems where the effects of space and time are coupled. The dimensionless form of the differential equations describing the problem are first cast into a set of first-order differential equations by introducing auxiliary variables. This permits the use of C° element approximation. The element properties are derived by utilizing p-version approximation functions in both space and time and then minimizing the error functional given by the space–time integral of the sum of squares of the errors resulting from the set of first-order differential equations. This results in a true space–time coupled least-squares minimization procedure. A time marching procedure is developed in which the solution for the current time step provides the initial conditions for the next time step. The space–time coupled p-version approximation functions provide the ability to control truncation error which, in turn, permits very large time steps. What literally requires hundreds of time steps in uncoupled conventional time marching procedures can be accomplished in a single time step using the present space–time coupled approach. For non-linear problems the non-linear algebraic equations resulting from the least-squares process are solved using Newton's method with a line search. This procedure results in a symmetric Hessian matrix. Equilibrium iterations are carried out for each time step until the error functional and each component of the gradient of the error functional with respect to nodal degrees of freedom are below a certain prespecified tolerance. The generality, success and superiority of the present formulation procedure is demonstrated by presenting specific formulations and examples for the advection–diffusion and Burgers equations. The results are compared with the analytical solutions and those reported in the literature. The formulation presented here is ideally suited for space–time adaptive procedures. The element error functional values provide a mechanism for adaptive h, p or hp refinements. The work presented in this paper provides the basis for the extension of the space–time coupled least-squares minimization concept to two- and three-dimensional unsteady fluid flow.  相似文献   

8.
A simple algorithm is developed for adaptive and automatic h refinement of two-dimensional triangular finite element meshes. The algorithm is based on an element refinement ratio that can be calculated from an a posteriori error indicator. The element subdivision algorithm is robust and recursive. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several example problems are presented to illustrate the utility of the approach.  相似文献   

9.
Recently very promising results in a so-called hp-version of the finite element method have been obtained. The basic idea is a balanced combination of mesh refinement and increase of the polynomial degree of the shape functions. This idea is applied to a boundary collocation method in this paper. The new method is compared with adaptive h- and p-versions and it is shown in numerical examples that even in the presence of singularities in the exact solution exponential convergence is obtained.  相似文献   

10.
This paper presents a p-version least-squares finite element formulation of the convection-diffusion equation. The second-order differential equation describing convection-diffusion is reduced to a series of equivalent first-order differential equations for which the least-squares formulation is constructed using the same order of approximation for each of the dependent variables. The hierarchical approximation functions and the nodal variable operators are established by first constructing the one-dimensional hierarchical approximation functions of orders and and the corresponding nodal variable operators in ξ and η-direction and then taking their products. Numerical results are presented and compared with analytical and numerical solutions for a two-dimensional test problem to demonstrate the accuracy and the convergence characteristics of the present formulation. The Gaussian quadrature rule used to calculate the numerical values of the element matrices, vectors as well as the error functional I(E), is established based on the highest degree of the polynomial in the integrands. It is demonstrated that this quadrature rule with the present p-version formulation produces excellent results for very low as well as extremely high Peclet numbers (10-106) and, furthermore, the error functional I (sum of the integrals of E2) is a monotonically decreasing function of the number of degrees of freedom as the p-levels are increased for a fixed mesh. It is shown that exact integration with the h-version (linear and parabolic elements) produces inaccurate solutions at high Peclet numbers. Results are also presented using reduced integration. It is shown that the reduced integration with p-version produces accurate values of the primary variable even for relatively low p-levels but the error functional I (when calculated using the proper integration rule) has a much higher value (due to errors in the derivatives of the primary variable) and is a non-monotonic function of the degrees of freedom as p-levels are increased for a fixed mesh. Similar behaviour of the error functional I is also observed for the h-models using linear elements when reduced integration is used. Although the h-models using parabolic elements produce monotonic error functional behaviour as the number of degrees of freedom are increased, the error values are inferior to the p-version results using exact integration.  相似文献   

11.
An a posteriori error estimator is presented which allows a good pointwise evaluation of the error in predicted stresses and can easily be implemented in existing FE codes. Although this estimator has especially been developed for and tested on p-version Hybrid-Trefftz (HT) elements, it is anticipated that it can also be applied to conventional conforming p-version elements. The practical efficiency of the estimator is illustrated through the solution of various plate bending problems by using the HT p-version Kirchhoff plate elements.2  相似文献   

12.
In static force-deflection applications of the finite element method, convergence rates for the p-version, in which the polynomial degree of element interpolation functions is increased while the mesh remains fixed, are superior to those for the h-version, in which the element degree remains fixed while the mesh is refined so that element size approaches zero. In structural dynamics applications, one does not seek to approximate a single solution, as in static applications, but seeks estimates for a number of the lower system eigenvalues. This paper identifies factors responsible for poorer accuracy in higher computed eigenvalues. In addition, it explains why the p-version of the finite element method can be expected to exhibit significantly better eigenvalue convergence than the h-version. Numerical examples demonstrate the superiority of the p-version over the h-version. They also show the effects of various mechanisms limiting eigenvalue convergence.  相似文献   

13.
Effective methods leading to automated adaptive numerical solutions to geometrically non-linear shell-type problems are studied in this work. In particular, procedures for improving the accuracy, the reliability and the computational efficiency of the finite element solutions are of primary interest here. This is addressed using h-adaptive mesh refinement based on a posteriori error estimation, self-adaptive methods in global incremental/iterative processes, as well as smart algorithms and heuristic approaches based on methods of knowledge engineering. Seemless integration of h-adaptive finite element methods with adaptive step-length control makes it possible to maintain a prescribed accuracy while maintaining the solution efficiency without user intervention throughout the process of a non-linear analysis. Several examples illustrate the merit and potential of the approach studied herein and confirm the feasibility of developing an automatic adaptive environment for geometrically non-linear analysis of shell structures.  相似文献   

14.
This paper is concerned with the development of a general framework for adaptive mesh refinement and coarsening in three‐dimensional finite‐deformation dynamic–plasticity problems. Mesh adaption is driven by a posteriori global error bounds derived on the basis of a variational formulation of the incremental problem. The particular mesh‐refinement strategy adopted is based on Rivara's longest‐edge propagation path (LEPP) bisection algorithm. Our strategy for mesh coarsening, or unrefinement, is based on the elimination of elements by edge‐collapse. The convergence characteristics of the method in the presence of strong elastic singularities are tested numerically. An application to the three‐dimensional simulation of adiabatic shear bands in dynamically loaded tantalum is also presented which demonstrates the robustness and versatility of the method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In the present work, an r-h adaptive isogeometric analysis is proposed for plane elasticity problems. For performing the r-adaption, the control net is considered to be a network of springs with the individual spring stiffness values being proportional to the error estimated at the control points. While preserving the boundary control points, relocation of only the interior control points is made by adopting a successive relaxation approach to achieve the equilibrium of spring system. To suit the noninterpolatory nature of the isogeometric approximation, a new point-wise error estimate for the h-refinement is proposed. To evaluate the point-wise error, hierarchical B-spline functions in Sobolev spaces are considered. The proposed adaptive h-refinement strategy is based on using De-Casteljau’s algorithm for obtaining the new control points. The subsequent control meshes are thus obtained by using a recursive subdivision of reference control mesh. Such a strategy ensures that the control points lie in the physical domain in subsequent refinements, thus making the physical mesh to exactly interpolate the control mesh and thereby allowing the exact imposition of essential boundary conditions in the classical isogeometric analysis (IGA). The combined r-h adaptive refinement strategy results in better convergence characteristics with reduced errors than r- or h-refinement. Several numerical examples are presented to illustrate the efficiency of the proposed approach.  相似文献   

16.
This study enhances the classical energy norm based adaptive procedure by introducing new refinement criteria, based on the projection-based interpolation technique and the steepest descent method, to drive mesh refinement for the scaled boundary finite element method. The technique is applied to p-adaptivity in this paper, but extension to h- and hp-adaptivity is straightforward. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh, is used to represent the unknown exact solution. In the new adaptive approach, a projection-based interpolation technique is developed for the 2D scaled boundary finite element method. New refinement criteria are proposed. The optimum mesh is assumed to be obtained by maximizing the decrease rate of the projection-based interpolation error appearing in the current solution. This refinement strategy can be interpreted as applying the minimisation steepest descent method. Numerical studies show the new approach out-performs the conventional approach.  相似文献   

17.
The existence of local a posteriori error indicators for the p-version of the finite element method is demonstrated through numerical examples. The optimal sequence of p-distributions can be closely followed on the basis of the indicators.  相似文献   

18.
In this article, a recovery by compatibility in patches (RCP)-based a posteriori error estimator is proposed for the virtual element method (VEM), and it is utilized to drive adaptive mesh refinement processes in two-dimensional elasticity problems. In RCP, recovered stresses are obtained by minimizing the complementary energy of patches of elements over a set of assumed equilibrated stress modes. To this aim, the explicit knowledge of displacements is only needed along the patch boundaries and no knowledge of superconvergent points is required, so making the RCP naturally suitable for the VEM. The a posteriori error estimation is conducted by comparing the stress field of a standard displacement-based VEM solution and the stress field obtained through RCP. The procedure is simple, and it does not require ad hoc modifications for small patches. The capability of this RCP-based error estimator to drive adaptive mesh refinements is successfully demonstrated through various numerical examples.  相似文献   

19.
The derivation of an a posteriori error estimator for frictionless contact problems under the hypotheses of linear elastic behaviour and infinitesimal deformation is presented. The approximated solution of this problem is obtained by using the finite element method. A penalization or augmented‐Lagrangian technique is used to deal with the unilateral boundary condition over the contact boundary. An a posteriori error estimator suitable for adaptive mesh refinement in this problem is proposed, together with its mathematical justification. Up to the present time, this mathematical proof is restricted to the penalization approach. Several numerical results are reported in order to corroborate the applicability of this estimator and to compare it with other a posteriori error estimators. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The finite element analysis of linear elastic fracture mechanics problems is complicated by the presence of the singular and finite non-singular stress distributions in the crack tip region. The availability of a constant stress term in addition to the singular term in the standard h-version singular finite elements is insufficient to model the finite nonsingular stress zone. A p-version singular finite element capable of modelling the higher-order non-singular stress terms in addition to the singular term and the constant term is presented. The formulation for the displacement substitution technique for computing the stress intensity factors using singular p-version triangular finite elements is developed. Unlike the standard h-version formulation, the stress intensity factors computed using the p-version displacement substitution technique do not depend on the specific arrangement and length of the quarter point elements, and require simple mesh designs as well as fewer number of degrees of freedom. Numerical studies comparing the convergence of the stress intensity factors computed by the p-version method against other available alternatives such as the h-version method and the contour integral method are presented to demonstrate the effectiveness of the present developments. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号