首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
6-Hydroxydopamine-induced nerve terminal lesion of the nigrostriatal system may provide a partial lesion model of Parkinson's disease useful for the assessment of neuroprotective treatments and behavioral recovery after therapeutic intervention. The aim of the present study was to assess the retrograde degenerative changes in the dopaminergic neurons of the substantia nigra and the associated behavioral and neurochemical consequences of intrastriatal injections of 6-hydroxydopamine in young adult rats. Four groups of rats were stereotaxically injected in the right striatum with graded doses of 6-hydroxydopamine ranging from 0 to 20 mu g. Structural and functional deficits were quantified by tyrosine hydroxylase-immunoreactive nigral cell numbers, striatal dopamine content, skilled paw use, and drug-induced rotation. The results show that striatal 6-hydroxydopamine lesions produce dose-dependent decreases in striatal dopamine levels and tyrosine hydroxylase-immunoreactive cell numbers in the ipsilateral substantia nigra, accompanied by a significant long-lasting atrophy of the remaining dopaminergic neurons. Paw reaching test scores on the side contralateral to the lesion were non-linearly correlated with dopaminergic neuronal cell loss and exhibited a clear symptomatic threshold such that impaired paw use appeared only after >50% loss of nigral dopamine neurons or a reduction of 60-80% of striatal dopamine levels. The behavioral, cellular, and neurochemical effects of the nerve terminal lesion thus bear some resemblance to the early stages of Parkinson's disease, where the severity of motor impairment is correlated with the loss of dopamine in the striatum and dopaminergic neuronal loss in the substantia nigra. Rats with intrastriatal 6-hydroxydopamine lesions thus provide a model of progressive dopamine neuron degeneration useful not only for the exploration of neuroprotective therapeutic intervention but also for the study of mechanisms of functional and structural recovery after subtotal damage of the nigrostriatal dopamine system.  相似文献   

2.
The dopamine antagonist haloperidol can cause tardive side-effects that may persist after the drug is withdrawn. We studied the time course of changes in dopaminergic neurons of the substantia nigra and ventral tegmental area following withdrawal of haloperidol. Rats received daily intraperitoneal injections of saline or haloperidol for eight weeks and were killed at two, four or 12 weeks after the final injection. Sections of substantia nigra and ventral tegmental area were processed for tyrosine hydroxylase immunohistochemistry. Quantitative morphometric analysis was carried out blinded in order to determine the number, cell body size and topography of tyrosine hydroxylase-positive cells, and the immunoreactive area of the substantia nigra and ventral tegmental area. In haloperidol-treated rats, tyrosine hydroxylase-positive cell counts were normal in ventral tegmental area but were decreased in substantia nigra by 34% at two weeks withdrawal and by 52% at four weeks withdrawal; cell counts were almost fully recovered by 12 weeks withdrawal. Cross-sectional area of tyrosine hydroxylase immunoreactivity within the substantia nigra demonstrated a similar pattern of reduction, with full recovery by 12 weeks withdrawal. Mean cell size, by contrast, was essentially unchanged at two and four weeks withdrawal, but was significantly decreased in sub-regions of substantia nigra at 12 weeks withdrawal. These results indicate that haloperidol can produce selective changes in midbrain dopamine neurons that persist long after discontinuation of the drug. This decrease in tyrosine hydroxylase-immunoreactive cell counts may play a role in the neurobiology of the persistent tardive syndromes associated with the use of neuroleptics.  相似文献   

3.
In 22 of 30 male Wistar rats, reliable object-carrying was elicited concurrently with self-stimulation in a shuttlebox. Unilateral electrolytic and neurotoxic 6-hydroxydopamine (6-OHDA) lesions in the vicinity of the substantia nigra in 14 of the carrier Ss disrupted object-carrying in postoperative tests. As the 6-OHDA lesions reduced ipsilateral striatal tyrosine hydroxylase levels to less than 5% of the contralateral striatum, this suggests a role for the ascending dopaminergic nigrostriatal bundle in stimulation-induced object-carrying. Shuttlebox self-stimulation was unaffected by either type of lesion, and this result is interpreted as evidence for a dissociation of the neural correlates of self-stimulation and object-carrying. Implications of this finding for S. E. Glickman and D. B. Schiff's (see record 1967-05745-001) biological theory of reinforcement are discussed. Furthermore, the ineffectiveness of substantia nigra lesions on ipsilateral hypothalamic self-stimulation implies that while the dopaminergic nigrostriatal bundle may be subserving some aspects of lateral hypothalamic self-stimulation, the role is by no means an exclusive one. (French summary) (42 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
5.
This study combines immunocytochemical and stereological methods for the first time to obtain unbiased estimates of the number of cells in the entire substantia nigra and their respective mean volume. Nicotine, delivered by subcutaneously implanted osmotic pumps (0.125 mg/kg/h, 14 days) to male Sprague-Dawley rats with a partial unilateral mesodiencephalic lesion, caused a significant counteraction of the lesion-induced reduction in total number of nigral tyrosine hydroxylase-like immunoreactive neurons counterstained with Cresyl Violet compared with saline treated control animals. The number of Nissl stained neurons without tyrosine hydroxylase-like immunoreactivity was not affected by the lesion nor by nicotine. The numbers of non-neuronal glial fibrillary acidic protein-like immunoreactive cells counterstained with Cresyl Violet and smaller cells seen after Cresyl Violet staining alone, possibly representing microglia, were increased by the lesion but not affected by nicotine. No nicotine-induced effects were found on the number of nigral cells located contralateral to the lesion. The lesion-induced reduction in the mean volume of the nigral cells showing tyrosine hydroxylase-like immunoreactivity, as determined with the stereological rotator method, was not affected by nicotine. These findings suggest that continuous nicotine infusion exerts protective effects on lesioned nigroneostriatal dopamine systems and that these protective effects are selective for the nigral dopamine neurons not affecting other populations of neurons or non-neuronal cells. This neuroprotective effect might lead to new therapeutic strategies in clinical neurodegenerative disorders such as Parkinson's Disease.  相似文献   

6.
Unilateral electrolytic lesions of the locus coeruleus in rats result in spontaneous ipsiversive rotation, which is then replaced by contraversive rotation. One week after lesioning, when spontaneous turning ceases, apomorphine and d-amphetamine elicit contraversive circling behaviour, which was not affected by noradrenergic receptor blockade but was abolished by dopamine receptor blockade. The drug-induced contraversive circling response was also reproduced by piribedil but not clonidine. Combined unilateral electrolytic locus coeruleus and substantia nigra lesions on the same side resulted in apomorphine- and d-amphetamine-induced ipsilateral rotational behaviour which was indistinguishable from that seen with substantia nigra lesions alone. In rats with unilateral locus coeruleus lesions, the dose of intrastriatally injected apomorphine required to produce circling was less on the lesioned than the non-lesioned side. Direct injection of noradrenaline into one substantia nigra caused contraversive circling. Direct injection of phenoxybenzamine into one substantia nigra followed by apomorphine caused ipsiversive circling. The results suggest that the circling behaviour seen after unilateral locus coeruleus lesions depends on an asymmetry of striatal dopamine receptor activity and are consistent with a proposed coeruleus-nigral noradrenergic pathway, which enhances impulse flow in the dopaminergic nigrostriatal system.  相似文献   

7.
In the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease, controversy exists concerning the use of apomorphine- or D-amphetamine-induced rotations as reliable indicators of nigrostriatal dopamine depletion. Our objective was to evaluate which, if either, drug-induced behavior is more predictive of the extent of nigrostriatal dopamine depletion. Fischer 344 and Sprague-Dawley rats were unilaterally injected with 9 micrograms/4 microliters/4 min 6-hydroxydopamine into the medial forebrain bundle. The animals were behaviorally tested with apomorphine (0.05 mg/kg, s.c.) and D-amphetamine (5.0 mg/kg, s.c.). Following testing, the brains were removed and the right and left striata, substantia nigra and ventral tegmental area were dissected free and quickly frozen at -70 degrees C for analysis of catecholamine content by high performance liquid chromatography coupled with electrochemical detection. Our results indicate that an animal which has greater than a 90% depletion of dopamine in the striatum might not rotate substantially on apomorphine, without a concomitant depletion of > 50% of the DA content in the corresponding substantia nigra. No correlations were seen involving depletions of the ventral tegmental area and the extent of the lesions to the striatum. Submaximally lesioned (75-90% depleted) rats were found to rotate on D-amphetamine but not on apomorphine. In addition, control rats that did not receive lesions were often seen to rotate extensively on D-amphetamine. We therefore conclude that maximal lesions of the striatum and substantia nigra are required to generate rotations demonstrable with low dose apomorphine but not with D-amphetamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Effects of a single injection of either 150 micrograms human recombinant glial cell line-derived neurotrophic factor (rGDNF) or vehicle into the right substantia nigra were analyzed in 12 normal adult female rhesus monkeys. The studies included evaluating whole animal behavior, electrochemical recordings of striatal dopamine release, neurochemical determinations of basal ganglia and nigral monoamine levels, and immunohistochemical staining of the nigrostriatal dopamine system. The behavioral effects over the 3-week observation period following trophic factor administration were small, with blinded observers unable to distinguish between GDNF- and vehicle-treated animals. Quantitative measurements did show that five of six trophic factor recipients experienced some weight loss and four of the six GDNF recipients displayed small, but significant, increases in daytime activity levels. In vivo electrochemical recordings in the ipsilateral caudate and putamen 3 weeks after GDNF administration revealed increased potassium-evoked release of dopamine in trophic factor recipients. In a second series of animals killed at the same time, dopamine levels in the substantia nigra and ventral tegmental area of GDNF recipients were significantly increased, with ipsilateral values more than 200% higher than contralateral and control levels. Levels of the dopamine metabolite HVA were significantly elevated in the substantia nigra, ventral tegmental area, and caudate nucleus ipsilateral to the trophic factor injection. There was a trend toward increased HVA levels in the ipsilateral putamen, nucleus accumbens, and globus pallidus in GDNF-treated animals, but the ratios of HVA to dopamine were not significantly different between vehicle- and GDNF-treated recipients. Although some tissue damage from the delivery of concentrated trophic factor was evident, dopamine neurons remained in an adjacent to the injection site. In the substantia nigra ipsilateral to GDNF administration, dopamine-neuron perikaryal size was significantly increased, along with a significant increase in tyrosine hydroxylase-positive axons and dendrites. We conclude that, in the adult rhesus monkey, a single intranigral GDNF injection induces a significant upregulation of mesencephalic dopamine neurons which lasts for weeks.  相似文献   

9.
In vivo neuroprotective effects of melatonin on the nigrostriatal dopaminergic system in rats unilateral 6-hydroxydopamine (6-OHDA) lesions were tested. Two weeks after lesioning the dopamine receptor agonist, apomorphine produced rotational asymmetry. In contrast, melatonin treatment significantly reduced the motor deficit following apomorphine challenge. Analysis by tyrosine hydroxylase (TH) immunocytochemistry revealed the loss of cell bodies in the substantia nigra (SN) and absence of terminals in the dorsolateral striatum ipsilaterally. Melatonin treatment also resulted in the survival of dopaminergic neurons in SN and TH-immuoreactive terminals in the dorsolateral striatum. These behavioral and histochemical results may indicate a neuroprotective action of melatonin and suggest a potential pharmacological role in the treatment of Parkinson's disease.  相似文献   

10.
The present study examined the effect of chronic intrastriatal infusion of the dopamine receptor agonist lisuride on apomorphine-induced rotational behaviour and on D2-dopamine receptors in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal dopaminergic pathway. The completeness of the lesion of the right ascending nigrostriatal dopaminergic pathway was confirmed by apomorphine-induced rotation and [3H]-mazindol autoradiography. The intrastriatal infusion of lisuride (0.5 microgram/h) into the lesioned striatum for 2 weeks induced an immediate but temporary spontaneous contralateral rotation and a reduction of apomorphine-induced rotation of 47.2% relative to pre-lisuride infusion. The density of D2-receptors in the lisuride-infused striatum was significantly decreased by 40% relative to vehicle-infused 6-OHDA lesioned rats. The level of D2-dopamine receptors returned to normal levels 3 weeks after the termination of lisuride infusion. These results show that the intrastriatal infusion of lisuride reverses the behavioural and D2-dopamine receptor changes present in the 6-OHDA lesion rat model of Parkinson's disease.  相似文献   

11.
The neuropeptide substance P (SP) has been implicated in the control of various neuro-behavioral functions including reinforcement and learning processes. It also exerts neurotrophic and regenerating effects in vitro and in vivo. A previous study indicated a potential therapeutic effect of SP in rats with partial 6-hydroxydopamine lesions of the nigrostriatal dopamine system when SP was administered after the lesion. The purpose of the present study was to determine whether prelesion treatment with SP would also interact with the effects of unilateral 6-hydroxydopamine lesion of the substantia nigra. Thus, SP (50 micrograms/kg) was administered i.p. on 8 consecutive days prior to unilateral lesion of the substantia nigra. Furthermore, we investigated the effects of prelesion treatment with cholecystokinin-8S (CCK; 1 microgram/kg), another neuropeptide, which is closely related to dopaminergic neurons, and which also can have neurotrophic and neuroprotective functions. Our results show that animals with partial neostriatal dopamine depletions (residual dopamine levels of more than 10%) did not show turning asymmetries when pretreated with SP, whereas animals pretreated with vehicle exhibited an initial ipsiversive asymmetry from which they recovered. In contrast, behavioral asymmetries were most pronounced in animals which had been pretreated with CCK. These peptide treatments did not affect the degree of neostriatal dopamine depletion; however, dihydroxyphenylacetic acid/dopamine ratios were enhanced in the neurostriatum of animals with partial dopamine damage after SP- and CCK-pretreatment, and in the ventral striatum of SP-pretreated animals. These data provide evidence that prelesion treatment with SP, but not with CCK, can alleviate functional deficits induced by a partial nigro-striatal dopamine lesion. This effect may be related to enhanced ventral striatal dopamine activity and/or to the peptide's known effects on learning, motivation, and emotion.  相似文献   

12.
Antisense digoxigenin-labeled deoxyoligonucleotides probes and non-isotopic in situ hybridization (HIS) techniques have been used to explore the NMDA-NR1 receptor subunit mRNA distribution in different brain areas of rats which had their dopaminergic nigrostriatal pathway previously lesioned with intracerebral administration of 6-OH-dopamine (6-OH-DA). Intense and significant hybridization signals for NR1 mRNA were found in dentate gyrus and regions CA1-CA2-CA3 of the hippocampus, in layers II-III and V-VI of the cerebral cortex, and in the cerebellum of sham-treated rats. Basal ganglia structures such as the striatum exhibited few NR1 mRNA hybridization signals as compared to the hippocampus and cerebral cortex. In contrast, both zona compacta and reticulata of substantia nigra (SN) showed a reduced number of cells with nevertheless intense NR1 mRNA HIS signals. The NR1 mRNA distribution in the brain was affected in a brain regional selective manner by 6-OH-DA induced lesions of DA neuronal systems. A striking increase in NR1 mRNA HIS signals was observed in both striata after unilateral lesioning with 6-OH-DA. Instead, in SN compacta but not in reticulata, a moderate but significant bilateral reduction of NR1 mRNA was observed after unilateral 6-OH-DA injection. No significant changes in NR1 mRNA were detected in cerebral cortex and other brain regions after 6-OH-DA treatment. These studies, and others reported in the literature, support the view that extensive lesions of nigrostriatal DA-containing neurons in the brain may trigger compensatory or adaptative responses in basal ganglia structures such as striatum and substantia nigra which involve glutamateric neurons and the genic expression of NMDA receptors.  相似文献   

13.
Partial lesions of the nigrostriatal dopamine system have been investigated with respect to their ability to induce consistent long-lasting deficits in movement initiation and skilled forelimb use. In eight different lesion groups 6-hydroxydopamine (6-OHDA) was injected at one, two, three, or four sites into the lateral sector of the right striatum, in a total dose of 20-30 microgram. Impairments in movement initiation in a forelimb stepping test, and in skilled paw use in a paw-reaching test, was seen only in animals where the severity of the lesion exceeded a critical threshold, which was different for the different tests used: single (1 x 20 microgram) or two-site (2 x 10 microgram) injections into the striatum had only small affects on forelimb stepping, no effect on skilled paw use. More pronounced deficits were obtained in animals where the same total dose of 6-OHDA was distributed over three or four sites along the rostro-caudal extent of the lateral striatum or where the injections were made close to the junction of the globus pallidus. The results show that a 60-70% reduction in tyrosine hydroxylase (TH)-positive fiber density in the lateral striatum, accompanied by a 50-60% reduction in TH-positive cells in substantia nigra (SN), is sufficient for the induction of significant impairment in initiation of stepping. Impaired skilled paw-use, on the other hand, was obtained only with a four-site (4 x 7 microgram) lesion, which induced 80-95% reduction in TH fiber density throughout the rostrocaudal extent of the lateral striatum and a 75% loss of TH-positive neurons in SN. Drug-induced rotation, by contrast, was observed also in animals with more restricted presymptomatic lesions. The results indicate that the four-site intrastriatal 6-OHDA lesion may be a relevant model of the neuropathology seen in parkinsonian patients in a manifest symptomatic stage of the disease and may be particularly useful experimentally since it leaves a significant portion of the nigrostriatal projection intact which can serve as a substrate for regeneration and functional recovery in response to growth promoting and neuroprotective agents.  相似文献   

14.
15.
The present studies were designed to determine whether administration of recombinant human glial cell line-derived neurotrophic factor (rhGDNF) into either the substantia nigra or striatum is capable of augmenting dopamine function of the nigrostriatal pathway in normal rats. Single bolus intracranial injections of rhGDNF at either site increased locomotor activity and decreased food and water consumption and body weight in a dose-dependent manner when compared to vehicle-treated animals. These behavioral responses returned to pre-control levels within 3 weeks post rhGDNF administration. Administration of rhGDNF intranigrally increased dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels of the ipsilateral substantia nigra at 2 and 6 weeks post injection but had no augmenting effects on dopamine or its metabolites in the striatum. Administration of rhGDNF intrastriatally increased DOPAC and HVA levels of the ipsilateral striatum, although striatal dopamine levels were unchanged. Ipsilateral nigral dopamine levels were increased after intrastriatal injection of rhGDNF. The effects of intracranial rhGDNF were not specific to the nigrostriatal dopamine system, since nigrostriatal serotonin, 5-hydroxyindoleacetic acid (5-HIAA), epinephrine and norepinephrine transmitter levels were altered depending on administration route for rhGDNF and dose. Taken together, these data demonstrate long-lasting neurochemical and behavioral changes which suggest that rhGDNF can augment function in adult rat dopamine neurons. Therefore, rhGDNF may have therapeutic potential for Parkinson's disease.  相似文献   

16.
There is increasing evidence of a trophic-like mechanism for some effects ascribed to deprenyl therapy in the central nervous system. For that, we studied the effect of chronic treatment with deprenyl in an animal model of Parkinson's disease induced by unilateral knife transection of the medial forebrain bundle (MFB) in adult rats. The experimental conditions included a 3-week pretreatment with deprenyl before stereotaxic transection of the MFB. Following surgery, deprenyl treatment was maintained for 3 weeks. Neurochemical and immunohistochemical procedures were used to study the dopaminergic system and reactive astrocytes in the nigrostriatal system. Deprenyl treatment failed to counteract the axotomy-induced degenerative changes of the nigrostriatal dopaminergic system. However, it was effective in increasing the density of reactive astrocytes in terms of glial fibrillary acidic protein (GFAP) immunoreactivity in the intact contralateral substantia nigra and also in further enhancing the axotomy-induced increase of GFAP immunolabeled astrocytes in the lesioned substantia nigra. This deprenyl-induced effect on GFAP immunoreactivity was confined to substantia nigra without effect in striatum. In addition, we found a medial to lateral gradient decrease in the distribution pattern of GFAP immunolabeled astrocytes. Axotomy increased the number of reactive astrocytes in either striatal area examined, but yet the preferential distribution pattern of reactive astrocytes in striatum was still evident.  相似文献   

17.
Rats were injected unilaterally with 6-hydroxydopamine either in the medial forebrain bundle or in the dorsolateral substantia nigra. Another group was injected unilaterally with kainate in the striatum. The loss of neurons was assessed by a reduction in tyrosine hydroxylase-like immunoreactivity for dopaminergic neurons, and choline acetyltransferase-like and glutamate decarboxylase-like immunoreactivities for cholinergic and GABAergic neurons, respectively. Brain sections also were analysed by autoradiography on 20 micron sections with the radio-iodinated serotonin-4 receptor antagonist [125I]SB 207710 [Brown A. M. et al. (1993) Br. J. Pharmac. 110, 10P]. Kainate injections in the striatum resulted in loss of choline acetyltransferase- and glutamate decarboxylase-like immunoreactive cell bodies in this area. There was also a decrease in glutamate decarboxylase-like immunoreactivity on the ipsilateral side in the substantia nigra and entopeduncular nucleus. These changes were accompanied by substantial (> 50%) decreases in [125I]SB 207710 binding in both the ipsilateral striatum (confined to the lesioned area) and substantia nigra, with no change in either the nucleus accumbens or the globus pallidus. There was also significant loss of [125I]SB 207710 binding in the ipsilateral entopeduncular nucleus. 6-Hydroxydopamine lesions placed either in the medial forebrain bundle or in the substantia nigra failed to decrease [125I]SB 207710 binding in any of these areas, although there was total loss of tyrosine hydroxylase-like immunoreactive terminals in the striatum and cell bodies in the nigra. We conclude that serotonin-4 receptors are present on projection neurons, both on their perikarya in the striatum and terminals in the nigra and entopeduncular nucleus. It is likely that these receptors are located on the GABAergic projection neurons and possibly on cholinergic and GABAergic interneurons. However, serotonin-4 receptors are not located on dopaminergic neurons, either on their cell bodies in the substantia nigra or terminals in the striatum.  相似文献   

18.
Using a rotameter described by Ungrstedt, the influence of pretreatment with 6-hydroxy-dopamine and transections of the Capsula interna on the asymmetry of the animal's poise and movement following systemic and intracerebral administration of dopamine and apomorphine was studied. After lesion of the nigrostriatal tract, i.p. administered apomorphine caused the animals to rotate towards the damaged side. After injection of apomorphine in the Nucleus caudatoputamen of healthy animals, initial rotations towards the injection side with subsequent opposite rotation were observed, whereas dopamine injected into the Nucleus caudatoputamen and the Substantia nigra initiated rotations in contralateral direction only. Pretreatment with haloperidole nullified the effect of apomorphine. The results have proved the effectiveness both in the Nucleus caudatoputamen and the Substantia nigra of drugs stimulating the dopamine receptors. With intact rats, the two sides of the nigrostriatal system are functionally asymmetric, which is reflected by the quantitative differences of responses following stimulation of dopamine-sensitive receptors and the individually different preference of one rotational direction. These individual behavioural patterns are modified by experimental influences.  相似文献   

19.
We studied sequential changes in electrophysiological profiles of the ipsilateral substantia nigra neurons in an in vitro slice preparation obtained from the middle cerebral artery-occluded rats. Histological examination revealed marked atrophy and neurodegeneration in the ipsilateral substantia nigra pars reticulata at 14 days after middle cerebral artery occlusion. Compared with the control group, there was no significant change in electrical membrane properties and synaptic responses of substantia nigra pars reticulata neurons examined at one to two weeks after middle cerebral artery occlusion. On the other hand, there was a significant increase in the input resistance and spontaneous firing rate of substantia nigra pars compacta neurons at 13-16 days after middle cerebral artery occlusion. Furthermore, inhibitory postsynaptic potentials evoked by stimulation of the subthalamus in substantia nigra pars compacta neurons was suppressed at five to eight days after middle cerebral artery occlusion. At the same time excitatory postsynaptic potentials evoked by the subthalamic stimulation was increased. Bath application of bicuculline methiodide (50 microM), a GABA(A) receptor antagonist, significantly increased the firing rate of substantia nigra pars compacta neurons from intact rats. These results strongly suggest that changes in electrophysiological responses observed in substantia nigra pars compacta neurons is caused by degeneration of GABAergic afferents from the substantia nigra pars reticulata following middle cerebral artery occlusion. While previous studies indirectly suggested that hyperexcitation due to deafferentation from the neostriatum may be a major underlying mechanism in delayed degeneration of substantia nigra pars reticulata neurons after middle cerebral artery occlusion, the present electrophysiological experiments provide evidence of hyperexcitation in substantia nigra pars compacta neurons but not in pars reticulata neurons at the chronic phase of striatal infarction.  相似文献   

20.
A 37 year woman developed neuroleptic induced parkinsonism that persisted long after the drug had been discontinued. This prompted a study of the effect of an eight week course of haloperidol (HAL) followed by two week withdrawal, on dopaminergic neurons of the substantia nigra in rats. Animals treated with HAL showed a highly significant 32%-46% loss of tyrosine hydroxylase (TH) immunoreactive neurons in the substantia nigra, and 20% contraction of the TH stained dendritic arbour. Neuroleptic drug induced downregulation of nigral dopaminergic neurons may help to explain the persistent parkinsonism found in many patients after withdrawal of medication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号