首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李伟伟  邓霞  俞骞 《山西建筑》2012,38(19):134-136
介绍了羟基氧化铁的种类、结构、表面物理化学性质,讨论了羟基氧化铁制备时反应物(如铁盐种类、沉淀剂)与反应条件(如温度、pH值、表面活性剂等)对产物的影响。最后,对羟基氧化铁在污水处理中的应用进行概述,对实际工程的应用具有重要意义。  相似文献   

2.
Dong H  Guan X  Lo IM 《Water research》2012,46(13):4071-4080
Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption.  相似文献   

3.
Huang YH  Zhang TC 《Water research》2006,40(16):3075-3082
Batch tests were conducted to investigate reduction of nitrobenzene in a zerovalent iron system (Fe0) under various conditions. The results indicated that a limited amount of nitrobenzene (ArNO2) could be reduced to aniline by Fe0, but formation of a lepidocrocite (gamma-FeOOH) coating could significantly slow down the reaction. However, augmenting Fe0 with substoichiometric FeCl2 could dramatically accelerate the reaction. Surface-adsorbed Fe(II), not pH nor Cl-, was found to be responsible for rejuvenating the system. O2 and nitrobenzene could be concomitantly reduced by Fe0 in the presence of Fe2+. In the Fe0 system, both nitrobenzene and O2 favored formation of lepidocrocite; in the presence of aq. Fe(II), a stratified corrosion coating could develop, with magnetite (Fe3O4) as the inner layer and lepidocrocite as the outer layer. Fe2+ was not the main reductant for the reactions, but might accelerate the autoreduction of lepidocrocite to magnetite by the underlying Fe0. Our understanding on the role of Fe(II) in conjunction with a stratified, evolving corrosion coating may be useful for establishing an iron aquatic corrosion model.  相似文献   

4.
Mercury (Hg) immobilization using stabilized iron sulfide (FeS) nanoparticles was investigated through a series of batch and column experiments. The nanoparticles were prepared using a low-cost, food-grade cellulose (sodium carboxymethyl cellulose, CMC) as the stabilizer. The hydrodynamic diameter of fresh FeS–CMC nanoparticles was measured to be 38.5 ± 5.4 nm. Batch tests showed that the nanoparticles can effectively immobilize Hg in a clay loam sediment. The Hg distribution coefficient for the nanoparticles was determined to be 8930 ± 1480 L/g, which is >4 orders of magnitude greater than for the sediment. When the Hg-laden sediment was treated at an FeS-to-Hg molar ratio of 26.5, the Hg concentration leached into water was reduced by 97% and the TCLP (toxicity characteristic leaching procedure) leachability of Hg was reduced by 99%. Column tests showed that water-leachable mercury from the sediment containing 3120 mg/L Hg was reduced by 67% and the TCLP leachability by >77% when the sediment was treated with 67 pore volumes (PVs) of a 0.5 g/L FeS nanoparticle suspension. Column tests proved that the stabilized nanoparticles were highly mobile in the sediment and full breakthrough of the nanoparticles occurred at ∼18 PVs.  相似文献   

5.
Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m3) into an anoxic aquifer with elevated iron (0.27 mmol L−1) and arsenic (0.27 μmol L−1) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments.Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (RFe) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system’s efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at RFe = ∼8). RAs did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic removal, but rather the injection volume. Additionally, no relation has been observed in this study between the amount of removed arsenic at different molar Fe:As ratios (28, 63, and 103) of the groundwater. It is proposed that the removal of arsenic was limited by the presence of other anions, such as phosphate, competing for the same adsorption sites.  相似文献   

6.
This research studied As(III) and As(V) removal during electrocoagulation (EC) in comparison with FeCl3 chemical coagulation (CC). The study also attempted to verify chlorine production and the reported oxidation of As(III) during EC. Results showed that As(V) removal during batch EC was erratic at pH 6.5 and the removal was higher-than-expected based on the generation of ferrous iron (Fe2+) during EC. As(V) removal by batch EC was equal to or better than CC at pH 7.5 and 8.5, however soluble Fe2+ was observed in the 0.2-μm membrane filtrate at pH 7.5 (10-45%), and is a cause for concern. Continuous steady-state operation of the EC unit confirmed the deleterious presence of soluble Fe2+ in the treated water. The higher-than-expected As(V) removals during batch mode were presumed due to As(V) adsorption onto the iron rod oxyhydroxides surfaces prior to the attainment of steady-state operation. As(V) removal increased with decreasing pH during both CC and EC, however EC at pH 6.5 was anomalous because of erratic Fe2+ oxidation. The best adsorption capacity was observed with CC at pH 6.5, while lower but similar adsorption capacities were observed at pH 7.5 and 8.5 with CC and EC. A comparison of As(III) adsorption showed better removals during EC compared with CC possibly due to a temporary pH increase during EC. In contrast to literature reports, As(III) oxidation was not observed during EC, and As(III) adsorption onto iron hydroxides during EC was only 5-30% that of As(V) adsorption. Also in contrast to literature, significant Cl2 was not generated during EC, in fact, the rods actually produced a significant chlorine demand due to reduced iron oxides on the rod. Although Cl2 generation and As(III) oxidation are possible using a graphite anode, a combination of graphite and iron rods in the same EC unit did not produce As(III) oxidation. However, a two-stage process (graphite anode followed by iron anode in separate chambers) was effective in As(III) oxidation and removal. The competing ions, silica and phosphate interfered with As(V) adsorption during both CC and EC. However, the degree of interference depends on the concentration and presence of other competing ions. In particular, the presence of silica lowered the effect of phosphate with increasing pH due to silica’s own significant effect at high pHs.  相似文献   

7.
This work presents a new framework for describing biologically mediated reduction of thin layers of poorly crystalline iron oxides. The research here explores the nature of the biomass to surface area relationship and the role of biogenic ferrous iron during Geobacter sulfurreducens-mediated ferrihydrite reduction, with and without an electron shuttle, through experiments and a mathematical model. The results indicate that a saturating function of biomass most accurately describes the rate of iron reduction without electron shuttles, based on the principle of electron transfer via direct contact. This study also finds that the most appropriate model of iron reduction in the presence of electron shuttles includes both a saturating function of biomass for electron transfer via direct contact and a first-order electron transfer to ferrihydrite via the electron shuttle, strongly supporting the idea that G. sulfurreducens uses both pathways simultaneously. In all experiments, G. sulfurreducens reduced less than 60% of the total ferric iron, a phenomenon that has often been explained through the inhibitory effects of biogenic ferrous iron in the dissolved phase. However, through experiments with spikes of ferrous sulfate, this study suggests that the role of dissolved ferrous iron is passive in this case, and does not directly inhibit the extent of iron reduction in ferrihydrite coated sand. These experiments find that solid phase ferrous iron is the most probable primary product of ferrihydrite reduction, and that the conversion of solid ferric iron to solid ferrous iron depletes a fixed pool of bioavailable ferric iron, thereby accounting for the incomplete reduction of ferric iron observed here. This is the first reported model that explicitly treats solid ferrous iron as the primary product of reduction, with aqueous ferrous iron as a passive byproduct. This simple mathematical model readily translates to other systems of microbially mediated iron reduction.  相似文献   

8.
Laboratory investigations were performed to estimate the potential mobility of arsenic (As) from a highly contaminated gold-mining soil under bio-oxidative aerobic conditions as a potential remediation process. The selected soil was sampled from a gold-mining site in the South of France. It contained 27700 mg kg(-1) total As, with only 0.01% present under water-soluble forms. The nature of the immobilization mechanisms was identified by using complementary physical and chemical techniques. As was found to be strongly associated to iron (oxy)hydroxide solid phase by adsorption and/or co-precipitation. Determination of iron (Fe) and As mobility as a function of pH showed that the release of As was related with the dissolution of Fe (oxy)hydroxide at very low pH values. Bioleaching experiments were conducted with the objective to enhance the mobilization of As from the source material via biological oxidation of elemental sulfur (S degree) into sulfuric acid by autotrophic exogenous or indigenous bacteria naturally located in the soil (i.e. Acidithiobacillus species). Tests conducted at 30 degrees C in shaker flasks supplemented with S degree resulted in very acidic (pH < 1) and oxidative conditions (oxidation/reduction potential (ORP) around +800 mV vs. NHE) and induced the extraction of up to 35% of As over 84 days of incubation. Under the experimental conditions of the study (batch experiments), As mobilization was strongly correlated to the dissolution of Fe solid phases. As mobilization was probably limited by the saturation of the liquid phase. Chimiolithotrophic exogenous population appeared to have a minor effect on As bioleaching. Endogenous populations were shown to rapidly develop their capacity to oxidize S degree and mobilize As from the mining soil in the form of arsenate when elemental S degree was supplemented. The use of microbial population adapted to high As concentrations reduced significantly the lag period to reach optimal pH/ORP conditions, and increased As extraction rate to a maximum of 41% within 70 days of incubation. However, As reprecipitation was subsequently observed, suggesting that the solution should be periodically replaced in order to optimize the process.  相似文献   

9.
Leupin OX  Hug SJ 《Water research》2005,39(9):1729-1740
Removing arsenic from contaminated groundwater in Bangladesh is challenging due to high concentrations of As(III), phosphate and silicate. Application of zero-valent iron as a promising removal method was investigated in detail with synthetic groundwater containing 500 microg/L As(III), 2-3mg/L P, 20mg/L Si, 8.2mM HCO3-, 2.5mM Ca2+, 1.6mM Mg2+ and pH 7.0. In a series of experiments, 1L was repeatedly passed through a mixture of 1.5 g iron filings and 3-4 g quartz sand in a vertical glass column (10mm diameter), allowing the water to re-aerate between each filtration. At a flow rate of 1L/h, up to 8 mg/L dissolved Fe(II) was released. During the subsequent oxidation of Fe(II) by dissolved oxygen, As(III) was partially oxidized and As(V) sorbed on the forming hydrous ferric oxides (HFO). HFO was retained in the next filtration step and was removed by shaking of the sand-iron mixture with water. Rapid phosphate removal provided optimal conditions for the sorption of As(V). Four filtrations lead to almost complete As(III) oxidation and removal of As(tot) to below 50 microg/L. In a prototype treatment with a succession of four filters, each containing 1.5 g iron and 60 g sand, 36 L could be treated to below 50 microg/L in one continuous filtration, without an added oxidant.  相似文献   

10.
High levels of total and bioavailable As in soils in mining areas may lead to the potential contamination of surface water and groundwater, being toxic to human, plants, and animals. The soils in the studied area (Province of Salamanca, Spain) recorded a total As concentration that varied from 5.5 mg/kg to 150 mg/kg, and water-soluble As ranged from 0.004 mg/kg to 0.107 mg/kg, often exceeding the guideline limits for agricultural soil (50 mg/kg total As, 0.04 mg/kg water-soluble As). The range of As concentration in pond water was < 0.001 μg/l-60 μg/l, with 40% of samples exceeding the maximum permissible level (10 μg/l) for drinking water. Estimated bioavailable As in soil varied from 0.045 mg/kg to 0.760 mg/kg, around six times higher than water-soluble As fraction, which may pose a high potential risk in regard to its entry into food chain. Soil column leaching tests show an As potential mobility constant threatening water contamination by continuous leaching. The vertical distribution of As through soil profiles suggests a deposition mechanism of this element on the top-soils that involves the wind or water transport of mine tailings. A similar vertical distribution of As and organic matter (OM) contents in soil profiles, as well as, significant correlations between As concentrations and OM and N contents, suggests that type and content of soil OM are major factors for determining the content, distribution, and mobilization of As in the soil. Due to the low supergenic mobility of this element in mining environments, the soil pollution degree in the studied area is moderate, in spite of the elevated As contents in mine tailings.  相似文献   

11.
Zhang TC  Huang YH 《Water research》2006,40(12):2311-2320
Rapid oxidation of Fe(0) by O(2) occurred when Fe(0) grains were bathed in 0.54 mM FeCl(2) solution saturated with dissolved oxygen (DO), forming a substantial corrosion coating on Fe(0) grains. A sonication method was developed to strip the corrosion coating off the iron grains layer by layer. The transformation of the constituents and the morphology of the corrosion coating along its depth and over reaction time were investigated with composition analysis, X-ray diffraction and scanning electron microscopy. Results indicate that the sonication method could consistently recover >90% iron oxides produced by the Fe(0)-DO redox reaction. Magnetite (Fe(3)O(4)) and lepidocrocite (gamma-FeOOH) were identified as the corrosion products. Initially, lepidocrocite was the preferential product in the presence of DO. As the oxide coating thickened, the inner layer transformed to magnetite, which retained as the only stable corrosion product once DO was depleted. The study confirms the phase transformations between gamma-FeOOH and Fe(3)O(4) within a stratified corrosion coating. The sonication technique exemplifies a new approach for investigating more complicated processes in Fe(0)/oxides/contaminants systems.  相似文献   

12.
An B  Liang Q  Zhao D 《Water research》2011,45(5):1961-1972
Ion exchange (IX) is considered by US EPA as one of the best available technologies for removing arsenic from drinking water. However, typical IX processes will generate large volumes of arsenic-laden regenerant brine that requires costly further handling and disposal. This study aimed to develop an engineered strategy to minimize the production and arsenic leachability of the process waste residual. We prepared and tested a new class of starch-bridged magnetite nanoparticles for removal of arsenate from spent IX brine. A low-cost, “green” starch at 0.049% (w/w) was used as a stabilizer to prevent the nanoparticles from agglomerating and as a bridging agent allowing the nanoparticles to flocculate and precipitate while maintaining their high arsenic sorption capacity. When applied to a simulated spent IX brine containing 300 mg/L As and 6% (w/w) NaCl, nearly 100% removal of arsenic was achieved within 1 h using the starch-bridged nanoparticles at an Fe-to-As molar ratio of 7.6, compared to only 20% removal when bare magnetite particles were used. Increasing NaCl in the brine from 0 to 10% (w/w) had little effect on the arsenic sorption capacity. Maximum uptake was observed within a pH range of 4-6. The Langmuir capacity coefficient was determined to be 248 mg/g at pH 5.0. The final treatment sludge was able to pass the TCLP (Toxicity Characteristic Leaching Procedure) based leachability of 5 mg/L as As.  相似文献   

13.
The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing ∼ 130 μg l− 1 As and two control sites irrigated with water containing < 15 μg l− 1 As. At both sites irrigated with contaminated water, As concentrations in soil water increased from < 10 μg l− 1 to > 1000 μg l− 1 during the first five weeks of the growth season and then gradually declined to < 10 μg l− 1 during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40 µg l− 1. At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500 mg kg− 1 towards the middle of the growth season. It then declined to ∼ 300 mg kg− 1 towards the end, a level still well above As concentration of ∼ 100 mg kg− 1 in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significantly limits the uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, needs to be better understood because they are likely to influence the uptake of As in rice grains.  相似文献   

14.
Removal of sulfide species from municipal sewage conveyance systems by dosage of iron salts is a relatively common practice. However, the reactions that occur between dissolved iron and sulfide species in municipal sewage media have not yet been fully quantified, and practical application relies heavily on empirical experience, which is often site specific. The aim of this work was to combine theoretical considerations and empirical observations to enable a more reliable prediction of the sulfide removal efficiency for a given dosing strategy. Two main questions were addressed, regarding the dominant sulfur species that results from the oxidation of sulfide by Fe(III) and the dominant precipitation reaction between Fe(II) and sulfide species. Comparison of thermodynamic prediction obtained by an equilibrium chemistry-based computer program (MINEQL+) with experimental results obtained by dosing ferrous salts showed that the product of precipitation is FeS under all operational conditions tested. Regarding the reaction between ferric salts and sulfide species, analysis of thermodynamic data suggested that the dominant product of sulfide oxidation under typical pe/pH conditions prevailing in municipal raw wastewater is SO(4)(2-). However, comparison between sulfide removal in laboratory experiments conducted with multiple samples of raw municipal sewage with a varying composition, and the prediction of MINEQL+ showed the main sulfide oxidation product to be S(0). In order to reduce sulfide in sewage to <0.1 mgS/l a minimal molar ratio of around 1.3 Fe to 1 S should be applied when ferrous salts are used, as compared with a minimal ratio of 0.9 Fe to 1 S required when ferric salts or a mixture of ferrous and ferric salts (at a 2 Fe(III) to 1 Fe(II) ratio) are used. It appears that the high Fe to S(-II) ratios often recommended in practice can be reduced considerably by applying tight in-line control.  相似文献   

15.
The precipitation of iron from an iron sulphate containing wastewater by aragonite, calcite and a variety of limestones and limesands was examined at pH values near 6 in an atmosphere of carbon dioxide. Siderite (ferrous carbonate) and a calcium siderite containing 10 mol% calcium were the only iron-containing products detected by XRD, and accounted for substantially all the iron removed from solution. Calcium siderite was the major product and constituted between 50 and 100% of the iron containing product.The rate of precipitation of iron was proportional to the square of the supersaturation of the solution with respect to siderite, and increased with increase in pH and alkalinity. Precipitation occurred at different rates with different carbonate materials, tending to increase with increasing proportion of aragonite in the material. Precipitation did not occur in suspensions of calcite and was slow even in suspensions of aragonite where equilibrium was not reached within 40 days.These data suggest that the frequent occurrence of groundwaters apparently supersaturated with respect to siderite may be due either to slow precipitation of siderite, or to equilibrium of the groundwater with respect to a more soluble calcium siderite. The minerals present in an aquifer thus need to be identified before the saturation state of the associated groundwater with respect to siderite can be ascertained.  相似文献   

16.
The effects of hardness (Ca2+) and alkalinity (HCO3) on arsenic(V) removal from humic acid (HA)-deficient and HA-rich groundwater by zero-valent iron (Fe0) were investigated using batch experiments. Arsenic, in general, is removed from groundwater possibly by adsorption and co-precipitation with the iron corrosion products. However, in the co-presence of HCO3 and Ca2+, the removal rate of arsenic increased with increasing concentrations of either Ca2+ or HCO3. It was observed that the removal of arsenic was significantly enhanced by the formation of CaCO3 as a nucleation seed for the growth of large iron (hydr)oxide particles. In the co-existence of Ca2+, HCO3 and HA, the presence of HA diminished the positive role of Ca2+ due to the formation of Fe-humate complexes in solution and delaying of the formation of CaCO3. As a result, the formation of the large iron (hydr)oxide particles was inhibited in the earlier stage which, in turn, affected the removal of arsenic. However, after the formation of CaCO3 and the subsequent growth of such particles, the presence of large iron (hydr)oxide particles resulted in the rapid removing of arsenic and Fe-humate by adsorption and/or co-precipitation.  相似文献   

17.
Four iron-bearing additives, selected for known or potential ability to adsorb anions, were evaluated for their effectiveness in attenuation of arsenic (As) in three soils with different sources of contamination (canal dredgings, coal fly ash deposits, and low-level alkali waste). Amendments used were lime, goethite (alpha-FeOOH) (crystallised iron oxide) and three iron-bearing additives, iron grit and iron (II) and (III) sulphates plus lime, which result in 'de novo' iron oxide formation in soils. Each was applied to the test soils at a rate of 1% w/w. A series of plant growth trials were conducted on the equilibrated, amended soils using spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) as test crops. These were grown in the contaminated soils for a period of three months in controlled glasshouse conditions. Evaluation of the potential of the amendments as immobilising agents was determined by plant growth (biomass) and elemental accumulation in plant tissues, indicating the bioavailability of As and other heavy metals following amendment. Goethite produced the most promising results in terms of reduction of plant shoot As content. It was concluded that, whilst Fe-oxides may be used as effective in situ amendments to attenuate As in soils by reducing its bioavailability, their effects on plant growth require careful consideration. In addition, soil-plant transfer of As was not completely halted by any amendment.  相似文献   

18.
Sources and temporal dynamics of arsenic in a New Jersey watershed, USA   总被引:1,自引:0,他引:1  
We examined potential sources and the temporal dynamics of arsenic (As) in the slightly alkaline waters of the Wallkill River, northwestern New Jersey, where violations of water-quality standards have occurred. The study design included synoptic sampling of stream water and bed sediments in tributaries and the mainstem, hyporheic-zone/ground water on the mainstem, and seasonal and diurnal sampling of water at selected mainstem sites. The river valley is bordered by gneiss and granite highlands and shale lowlands and underlain by glacial deposits over faulted dolomites and the Franklin Marble. Ore bodies in the Marble, which have been mined for rare Zn ore minerals, also contain As minerals. Tributaries, which drain predominantly forested and agricultural land, contributed relatively little As to the river. The highest concentrations of As (up to 34 mug/L) emanated from the outlet of man-made Lake Mohawk at the river's headwaters; these inputs varied substantially with season--high during warm months, low during cold months, apparently because of biological activity in the lake. Dissolved As concentrations were lower (3.3 microg/L) in river water than those in ground water discharging into the riverbed (22 microg/L) near the now-closed Franklin Mine. High total As concentrations (100-190 mg/kg) on the <0.63 microm fraction of bed sediments near the mine apparently result from sorption of the As in the ground-water discharge as well as from the As minerals in the streambed. As concentrations in river water were diluted during high stream flow in fall, winter and spring, and concentrated during low flow in summer. In unfiltered samples from a wetlands site, diurnal cycles in trace-element concentrations occurred; As concentrations appeared to peak during late afternoon as pH increased, but Fe, Mn, and Zn concentrations peaked shortly after midnight. The temporal variability of As and its presence at elevated concentrations in ground water and sediments as well as streamwater demonstrate the importance of (1) sampling a variety of media and (2) determining the time scales of As variability to fully characterize its passage through a river system.  相似文献   

19.
地下水生物除铁效果及其动力学研究   总被引:4,自引:0,他引:4  
禹丽娥 《供水技术》2009,3(3):19-21
采用生物滤柱进行了地下水除铁的试验研究。当原水中Fe^2+的质量浓度为4.3mg/L,pH值为6.4~6.6,水温为23~25℃,DO为1.5mg/L,滤速为8m/h时,出水中Fe^2+〈0.1mg,/L。通过灭菌试验得出,滤柱对铁的去除主要通过生物氧化完成,而非物理化学作用。通过分析不同高度滤层水中铁的含量研究了生物氧化除铁动力学规律,得出铁含量与空床接触时间之间的函数关系。  相似文献   

20.
涂铁陶粒处理含镍废水的实验研究   总被引:1,自引:0,他引:1  
对涂铁陶粒和陶粒作吸附剂的实验进行分析,表明了涂铁陶粒对含镍废水的去除效果更为显著,去除率可提高15%~20%左右,得出了最佳的吸附条件,即温度为室温,pH值范围在4~10,镍与吸附剂重量比为1:400,接触时间为45min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号