首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A miniaturized Vivaldi antenna is presented in the paper. On the basis of original antenna, the miniaturized Vivaldi antenna applies parasitic patch and lumped resistor to improve impedance characteristics. The proposed load can expand the lower operating frequency to 1.96 GHz without changing antenna dimensions. The size of antenna is set as 43 × 40 mm2. This size is about 0.28λL × 0.26λL, where λL is the free space wavelength at 1.96 GHz. The loaded Vivaldi antenna is fabricated and measured. The simulated and measured results clarify the viability and effectiveness of the proposed design. The measured impedance bandwidth (VSWR  2) is from 2 GHz to more than 18 GHz. In addition, the measured radiation patterns and a peak gain between −1 and 9 dB can be obtained in the band of 2–18 GHz.  相似文献   

2.
A novel implantable coplanar waveguide (CPW) fed crossed bowtie antenna is proposed for short-range biomedical applications. The antenna is designed to resonate at 2.45 GHz, one of the industrial-scientific-medical (ISM) bands. It is investigated by use of the method of moments design equations and its simulation software (IE3D version 15). The size of the antenna is 371.8 mm3 (26 mm × 22 mm × 0.65 mm). The simulated and analyzed return losses are −23 and −25 dB at the resonant frequency of 2.45 GHz. We have analyzed some more performances of the proposed antenna and the results show that the proposed antenna is a perfect candidate for implantation. The proposed antenna has substantial merits like low profile, miniaturization, lower return loss and better impedance matching with high gain over other implanted antennas.  相似文献   

3.
The metamaterial and fractal techniques are two main methods for antenna miniaturization and in this paper, we have modeled an especial shape of the antenna based on loop formation with metamaterial load for this aim. The metamaterial layer is made by multi parallel rings and the result shows that the final antenna size reduced drastically while the frequency shifts from 7 to 4 GHz. The antenna has Omni-directional pattern with the gain of 3.5 dBi, so the size is reduced around 40%for 4.5 GHz and another resonance is made at 2.5 GHz with a return lossless than −6 dB with more than 60% frequency shift. The reflection and transmission have been utilized for showing the left hand characteristic based on two port periodic simulations in HFSS full wave software. We show that how the metamaterial load can provide the circular polarization (CP) by controlling the current distribution. We also presented that by making slots we obtained the better Axial Ratio (AR) and miniaturized the antenna with reconfigurable qualification. As a result of fact, we show that by using metasurface we able to miniaturized the antenna and simultaneously achieved the circular polarization.  相似文献   

4.
This paper presents a new method of reduction mutual coupling. The proposed antenna array operating at 2.4 GHz is comprised of two rectangular patches and two parasitic microstrips, the parasitic microstrips are printed on substrate top layer over two rectangular patches. The measured results indicate that the mutual coupling is greatly suppressed, which becomes to −32 dB from −13.4 dB, and the radiation patterns are practically unaffected, as demonstrated by the comparison of identical antenna arrays with and without parasitic microstrips.  相似文献   

5.
In the recent years, the strong demand for high performance, low cost and high gain antennas for telecommunication, surveillance, and imaging applications has rapidly grown at microwave and higher frequencies. High speed wireless links require modular, compact size and high directivity with low cross polarization antennas. To demonstrate the proposed concepts and design features, in this paper, a substrate integrated waveguide (SIW) feeding technique has been created having well behaved gain and suitable −10 dB bandwidth from 23.8 GHz to 25.7 GHz (roughly 2 GHz bandwidth), while the impedance bandwidth for VSWR < 2.5 is nearly 3 GHz. The simulated antenna attains 12.5 ± 1 dB gain over majority of K band with an occupied size of 82 mm × 40 mm × 2.54 mm and has roughly 95% radiation efficiency. The proposed antenna is an excellent candidate for integrated low cost K band and even higher frequency systems. The simulations are done by two full wave packages i.e. ANSYS HFSS and CST MWS that associated with finite element method (FEM) and finite difference time domain (FDTD), respectively. The results show good agreements between these two methods.  相似文献   

6.
An antenna design with four band rejection characteristics for UWB application is demonstrated. The proposed unique UWB antenna has shape of an embedded ellipse at top of trapezoidal patch (named as ellipzoidal), 50 Ω impedance microstrip line feed and a truncated beveled ground plane. To realize four band stop characteristics, three inverted U-shaped and a single I-shaped slots each of half guided wavelength are utilized on radiating element. The fabricated antenna has dimensions of 27 mm × 36 mm × 1.6 mm. This four band notched ellipzoidal UWB antenna has measured frequency bandwidth 2.8–14 GHz for magnitude of S11 < −10 dB level. The measured ellipzoidal antenna exhibits four band rejection characteristics for magnitude of S11 > −10 dB at 3.55 GHz for WiMAX band (3.26–3.9 GHz), 4.55 GHz for ARN band (4.35–5.05 GHz), 5.7 GHz for WLAN band (5.5–6.65 GHz) and 8.8 GHz for ITU-8 band (7.95–9.35 GHz). The proposed ellipzoidal UWB antenna maintains omnidirectional radiation pattern, gain, linear phase response, <1 ns group delay, and transfer function in the whole UWB operating bandwidth except at notched frequency bands.  相似文献   

7.
In this paper, we propose an aperture type frequency selective surface (FSS) by employing an array of 12 × 12 unit cell elements and its resonant characteristics is analyzed. A resonant cavity antenna is then formed by the ground plane substrate and the FSS superstrate. The high reflective behavior of the proposed FSS at an offset of the resonance is then utilized for improving the performance of this cavity antenna. The impedance bandwidth and directivity are improved up to 0.66 GHz and 8.95 dBi, simultaneously at an optimum gap of 17.6 mm between the antenna substrate and FSS superstrate. For validation purpose, prototypes of both patch antenna and FSS, are fabricated and characterized. A fairly good agreement is achieved between the measured and simulated results.  相似文献   

8.
This paper presents a compact active integrated antenna (AIA) comprising of class-A power amplifier (PA) and stepped impedance planar inverted-F antenna (PIFA). In the proposed design, a common ground is used for both PA and PIFA, resulting a compact antenna of size 0.14λ0 × 0.11λ0 × 0.01λ00 is free space wavelength at 0.85 GHz). Moreover, it is demonstrated that by using the stepped impedance radiator the operating frequency of the active PIFA is shifted down from its natural resonant frequency of 1.36 GHz to 0.85 GHz, offering an extensive size reduction of 80%. This active integration increases the passive antenna gain through the effective loading of the antenna to the power amplifier. The measured result indicates that the active and passive antennas achieved the gain of 15.7 dB and 3.81 dBi, respectively after the integration. In addition, the maximum SAR value of antenna is found to be 0.64 W/kg.  相似文献   

9.
An antipodal Vivaldi antenna (AVA) with band-notched characteristics is proposed in this paper for ultra-wideband (UWB) applications. For UWB systems, there will be some interference from the narrow band systems. The proposed antenna adopts resonant parallel strip (RPS) to reject an unwanted narrow band. It is easy to tune the RPS to eliminate the interference band. To validate this approach, a printed AVA with RPS is simulated and fabricated. From 2 to 9 GHz, the proposed antenna shows a good result with approximate 2:1 VSWR, an average gain of 6.5 dB, and stable radiation patterns except the notched band. At the center frequency of the notched band, the measured results show that the VSWR is more than 8:1, the realized gain is less than −10 dB and a messy radiation pattern is achieved. The simulated and measured results are in good agreement.  相似文献   

10.
This paper researched a kind of dual-polarized and cylindrical waveguide antenna fed by two L-shaped probes at the antenna bottom. The designed antenna was composed of two orthogonal L-shaped coaxial probes and a cylindrical waveguide cavity. The two orthogonal field structures were excited and the dual-polarized radiation mode was formed. The feeding cables of two polarization ports went through the bottom of the cylindrical cavity and were connected with the microwave adaptors. The bottom feeding structure was suitable to constitute a planar antenna array. The electromagnetic simulation and optimization design of the proposed antenna were carried out by using the full wave electromagnetic simulation technique, and the simulation results showed that the isolation between two polarization ports were more than 20 dB within the frequency range of 4.8–5.4 GHz. At the center frequency, the cross-polarization levels of radiation pattern were lower than −21 dB at the boresights and the beam width of radiation patterns at E-plane and H-plane were more than 70° for two polarization ports. The designed antenna in this paper was fabricated and measured. The measurement results indicated that the designed antenna achieved anticipated radiation performances and design effectiveness of the dual-polarized antenna in this paper was proved. The dual-polarized and cylindrical waveguide antenna is suitable for some application fields such as dual-polarized array radar. The research results in this paper can provide a technical basis for the practical engineering application.  相似文献   

11.
In this paper, a super-wideband (SWB) printed monopole antenna has been designed and manufactured. The measured frequency band in terms of reflection coefficient is from 3.1 to 20 GHz under a −10 dB criteria, thanks to the inclusion of a taper impedance adapter. This single antenna has been used to implement and analyze several MIMO antenna configurations, where the isolation between the compounding elements has been checked and optimized to improve the Envelope Correlation Coefficient. Two elements MIMO configurations (parallel ports or orthogonal diversity), as well as four element MIMO antennas with parallel ports are presented. Non continuous ground planes of the MIMO antenna elements with the inclusion of L shaped thin strips are proposed as valid structures to significantly improve the side by side mutual coupling from an initial peak value of 15 dB to better than 24 dB within the entire frequency band. In all the presented MIMO antenna structures, the measured values demonstrate good performance up to 20 GHz, both in reflection and isolation. Nevertheless, the influence of the mutual coupling effects has been checked as more significant in the lower part of the frequency band, especially in the 4 element MIMO configuration. The inclusion of the L shaped strips in the ground plane significantly mitigates this effect. Although the antennas have only been measured up to 20 GHz (upper frequency limit of the laboratory Vector Network Analyzer), simulations show satisfactory antennas’ performance up to 50 GHz.  相似文献   

12.
A method to enhance the gain of microstrip dual-band multiple-input multiple-output (MIMO) antenna using partially reflective surface (PRS) layer is introduced and investigated in this paper. The proposed antenna consists of two FR4 substrates. The lower substrate has two radiating patches with parasitic elements that are supplied independently and create the MIMO property of the antenna. The upper substrate which is known as superstrate is arrays of PRS unit cells. The PRS layer printed on either side of a dielectric substrate and causes the antenna gain to increase in both frequency bands. The proposed antenna is appropriate for LTE (2.4–3.1 GHz) and WLAN (5.1–5.8 GHz) applications. The measured values of S11 and S22 parameters of the antenna are less than −10 dB and its FBR and gain are 12.5 dB and 5dBi, respectively. The average half power beam-width (HPBW) is roughly 108.  相似文献   

13.
This article investigates the mutual coupling reduction of a compact two elements wearable ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna. The ground plane of the proposed wearable MIMO antenna structure consists of three connected square ring-shaped stubs and two rectangular slots of narrow height. These ground stubs and slots minimize the mutual coupling effect between antennas and provide high isolation. The suggested MIMO antenna functions from the 1.87 to 13.82 GHz frequency spectrum covering WLAN (2.4–2.484 GHz), UWB (3.1–10.6 GHz), and X band (8–12 GHz) with 152.32% fractional bandwidth. It sustains port isolation above 27 dB throughout the 2 to 13.82 GHz frequency band. Inside the whole working frequency band, the suggested antenna offers a tiny envelope correlation coefficient (ECC < 0.098), greater diversity gain (DG > 9.93 dB), minimum channel capacity loss (CCL < 0.32 bits/s/Hz), and slight magnitude variation in mean effective gain of antenna ports (< 0.1 dB). The recommended antenna yields a SAR level below the designated threshold (<1.6 W/kg), affirming its suitability for body-worn applications. The designed MIMO antenna structure has an overall volume of 32 × 48 × 1.5 mm3.  相似文献   

14.
This paper presents the design of a modified ground apollonian ultra wideband (UWB) fractal antenna. The printed fractal antenna has been designed on a substrate with dielectric constant ?r = 4.3 and thickness h = 1.53 mm. The antenna has been fabricated with optimized dimension and tested. The experimental result of this antenna exhibits UWB characteristics from frequency range 3 GHz to 18 GHz. This corresponds to 142.86% impedance bandwidth with center frequency of 10.5 GHz. The experimental radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The effect of various design parameters on UWB characteristics have also been analyzed using a 3D electromagnetic simulator based on FEM method. The simulated and experimental results are in good agreement. The backscattering RCS of this UWB fractal antenna is better than ?31 dB throughout the FCC band (3.1 GHz to 10.6 GHz). The proposed coplanar waveguide feed appollian fractal antenna can be easily integrated with radio-frequency/microwave circuitry with low-manufacturing cost and useful for UWB applications.  相似文献   

15.
This research suggests a compact uniplanar multiple-input multiple-output (MIMO) with four ports for n79/n46/millimeter-wave (mm-wave) applications. The size of the quad MIMO is only 30 × 30 × 0.8 mm3. MIMO system consists of four identical Z-shaped radiators and common ground on the same plane and no decoupling structures are used for isolation. The system covers the bandwidth of 1.9 GHz (4.4–6.3 GHz) with a mid-frequency of 5.6 GHz and also covers the high-band frequencies ranging from 18 to 30 GHz with a bandwidth of 12 GHz. The suggested quad MIMO is fabricated on an FR-4 board, and the measured outcomes are well in line with the simulated results. An isolation value of −11 dB has been achieved for mid-band frequency and −24 dB has been attained for mm-wave bands. Through the value of DG = 10 dB, ECC < 0.07, TARC < −3 dB, MEG < −5 dB, and the ratio of MEG = 1 dB, uniplanar quad MIMO shows acceptable MIMO diversity performance. The entire system was evaluated for the users' hand specific absorption rate (SAR) impacts and is within the limits. After the complete analysis of the miniature quad MIMO antenna, an 8-port, and a 16-port uniplanar MIMO are simulated for smartphone-sized dielectric substrates and the performances were examined. The suggested MIMO system provides an efficient single-layer MIMO antenna to 5G smartphones with high bandwidth and low SAR. The proposed quad MIMO systems are suitable for both the sub-6 GHz band and the mm-wave band.  相似文献   

16.
In this paper, a novel bandwidth-enhanced ultra-wideband (UWB) tapered slot antenna with Y-shaped corrugated edges, is proposed. In the double-slot structure, the two slots are separated by a V-shaped metal surface with straight edges, which is beneficial to improve the directivity of the antenna. Meanwhile, an exponential Y-shaped corrugated edge is designed. This novel corrugated edge can not only improve the impedance bandwidth, but also enhance the gain of the antenna. Additionally, according to the theory of microwave network, this paper analyzes the reason of bandwidth enhancement realized by double-slot structure. The proposed antenna provides 167% fractional bandwidth from 2.5 GHz to 28 GHz. The gain of the proposed antenna is more than 10 dB from 3.5 GHz to 25 GHz, and more than 8 dB at the whole operating band.  相似文献   

17.
《Microelectronics Journal》2015,46(9):869-874
A compact differential band pass filter with asymmetric parallel-coupled lines (APCL) and center frequency of 5.6 GHz is proposed in this paper. The APCL suppresses unwanted RFID signals by introducing a fully tunable notched band at 6.8 GHz. By combining the concept of transmission matrix with modal analysis and extracting a novel model for symmetric three parallel coupled lines (SPCL), role of each resonant frequency is clearly explained. Measurement results in the differential mode show a pass band from 3.1 to 8.1 GHz and a wide stop band from 9.1 to 16 GHz with attenuation of more than 20 dB. In addition, S21 in common mode is lower than −10.5 dB over the pass band.  相似文献   

18.
A compact, low profile circular fractal patch antenna with low latency, low cost, high speed and multiband is presented. With the help of CST Microwave Studio Suite TM the proposed structure has been designed and analyzed. The simulated results are fixed experimentally. The suggested antenna has dimension of 32 × 36 mm2 (W × L) and operating from 2.93 GHz–9.53 GHz with VSWR  2. The aerial is assembled on FR-4 (εr = 4.4) substrate with a thickness of substrate 1.25 mm. Detailed parametric studies of the antennas have been carried out. This microstrip fed antenna is suitable for ultra wideband (UWB), S, C and part of the X band applications.  相似文献   

19.
《Microelectronics Journal》2015,46(10):935-940
A compact broadband monolithic microwave integrated circuit (MMIC) sub-harmonic mixer using an OMMIC 70 nm GaAs mHEMT technology is demonstrated for 60 GHz down-converter applications. The present mixer employs an anti-parallel diode pair (APDP) to fulfill a sub-harmonic mixing mechanism. Quasi-lumped components are employed to broaden the operational bandwidth and minimize the chip size to 1.5×0.77 mm2. The conversion gain is optimized by a quasi-lumped 90° phase shift stub. Experimental results show that from 50 GHz to 70 GHz, the conversion gain varies between −12.1 dB and −15.2 dB with a LO power level of 10 dBm and 1 GHz IF. The LO-to-RF, LO-to-IF and RF-to-IF isolations are found to be greater than 19.5 dB, 21.3 dB and 25.8 dB, respectively. The second harmonic component of the LO signal is suppressed. The proposed mixer has an input 1 dB compression point of -2 dBm and exhibits outstanding figure-of-merits.  相似文献   

20.
In this article, an Ultra Wide Band (UWB) monopole antenna based on Metamaterial (MTM) unit cell with reconfigurable feature has been developed. The proposed antenna covers 3.1–10.6 GHz for UWB applications and it has a reconfigurable narrow-band for L-band (1.27 GHz) and wireless applications. The gaps in Split Rings Resonator (SRR) element are made for the Left-hand capacitance and Ω-shape strip layer by four via junctions are used for Left-hand inductance. The antenna is printed on FR-4 low cost substrate with relative permittivity of 4.4 and thickness of 1.6 mm. The total size of the antenna is 40 mm × 40 mm. The simulation is carried out using HFSS commercial full-wave software. In addition, the experimental results are presented and compared with simulated results. The antenna gives a maximum peak gain of 6 dBi with Omni-Directional radiation pattern and high efficiency of more than 70%. By embedding four switches in Ω-shape strip layer, a reconfigurable antenna has been successfully designed for wireless applications with sufficient qualification. The monopole part covers the UWB spectrum and the CRLH is responsible for the controllable narrowband resonance. The simulation and experimental results are confirmed by the numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号