首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper presents a compact active integrated antenna (AIA) comprising of class-A power amplifier (PA) and stepped impedance planar inverted-F antenna (PIFA). In the proposed design, a common ground is used for both PA and PIFA, resulting a compact antenna of size 0.14λ0 × 0.11λ0 × 0.01λ00 is free space wavelength at 0.85 GHz). Moreover, it is demonstrated that by using the stepped impedance radiator the operating frequency of the active PIFA is shifted down from its natural resonant frequency of 1.36 GHz to 0.85 GHz, offering an extensive size reduction of 80%. This active integration increases the passive antenna gain through the effective loading of the antenna to the power amplifier. The measured result indicates that the active and passive antennas achieved the gain of 15.7 dB and 3.81 dBi, respectively after the integration. In addition, the maximum SAR value of antenna is found to be 0.64 W/kg.  相似文献   

2.
An antenna design with four band rejection characteristics for UWB application is demonstrated. The proposed unique UWB antenna has shape of an embedded ellipse at top of trapezoidal patch (named as ellipzoidal), 50 Ω impedance microstrip line feed and a truncated beveled ground plane. To realize four band stop characteristics, three inverted U-shaped and a single I-shaped slots each of half guided wavelength are utilized on radiating element. The fabricated antenna has dimensions of 27 mm × 36 mm × 1.6 mm. This four band notched ellipzoidal UWB antenna has measured frequency bandwidth 2.8–14 GHz for magnitude of S11 < −10 dB level. The measured ellipzoidal antenna exhibits four band rejection characteristics for magnitude of S11 > −10 dB at 3.55 GHz for WiMAX band (3.26–3.9 GHz), 4.55 GHz for ARN band (4.35–5.05 GHz), 5.7 GHz for WLAN band (5.5–6.65 GHz) and 8.8 GHz for ITU-8 band (7.95–9.35 GHz). The proposed ellipzoidal UWB antenna maintains omnidirectional radiation pattern, gain, linear phase response, <1 ns group delay, and transfer function in the whole UWB operating bandwidth except at notched frequency bands.  相似文献   

3.
The via-less composite right hand left hand (CRLH)-TL unit cells loaded compact and bandwidth-enhanced metamaterial (MTM) antennas have been designed and experimentally investigated. Four novel unit cells are designed and its dispersion characteristics of the proposed unit cells are numerically calculated which follows CRLH-TL properties. Further, the conventional metallic vias of CRLH-TL have been eliminated to increase the fabrication flexibility. The four CRLH-TL unit cells are loaded into monopole antennas which result, four via-less open-ended MTM antennas respectively. Its ZOR (zeroth order resonance) bandwidth is increased by realizing small shunt capacitance and large shunt inductance. Further, to increase overall antenna bandwidth, merging of ZOR mode to the higher and lower order modes into a single pass band has been done by realizing proper CRLH-TL unit cells. The each proposed antenna has a dimension of 0.13λ0 × 0.08λ0 × 0.0085λ0, where the free space wavelength λ0 at 1.6 GHz. The four proposed antennas have S11 < −10 dB fractional bandwidths (FBW) 173% (1–13.6 GHz), 169% (1.2–14.5 GHz), 158% (1.6–13.5 GHz) and 158% (1.6–13.5 GHz) respectively. The optimum gain and desired radiation characteristics have been obtained for all proposed antennas, which can be suitable for UWB applications. The CST-MWS has been used for the parametric study of the proposed antennas. A good agreement has been observed between simulated and experimental results.  相似文献   

4.
A novel high gain and broadband hybrid dielectric resonator antenna (DRA) is designed and experimentally validated. To obtain the wide impedance bandwidth, the proposed antenna geometry combines the dielectric resonator antenna and an underlying slot with a narrow rectangular notch, which effectively broadens the impedance bandwidth by merging the resonances of the slot and DRA. An inverted T-shaped feed line is used to excite both antennas, simultaneously. It supports amalgamation of different resonant modes of the both, DRA and slot antenna. The measured results show that the proposed antenna offers an impedance bandwidth of 120% from 1.67 to 6.7 GHz. The antenna gain is next enhanced by a reflector placed below the antenna at an optimum distance. On engineering the height and dimension of this reflector the antenna gain is improved from 2.2 dBi to 8.7 dBi at 1.7 GHz. Finally, antenna operation is attested experimentally with a rectifier circuit in the frequency range of 1.8–3.6 GHz, where various strong radio signals are freely available for RF energy harvesting. The measured maximum efficiency of the rectifier and rectenna circuit were found to be 74.4% and 61.4%, respectively.  相似文献   

5.
A novel implantable coplanar waveguide (CPW) fed crossed bowtie antenna is proposed for short-range biomedical applications. The antenna is designed to resonate at 2.45 GHz, one of the industrial-scientific-medical (ISM) bands. It is investigated by use of the method of moments design equations and its simulation software (IE3D version 15). The size of the antenna is 371.8 mm3 (26 mm × 22 mm × 0.65 mm). The simulated and analyzed return losses are −23 and −25 dB at the resonant frequency of 2.45 GHz. We have analyzed some more performances of the proposed antenna and the results show that the proposed antenna is a perfect candidate for implantation. The proposed antenna has substantial merits like low profile, miniaturization, lower return loss and better impedance matching with high gain over other implanted antennas.  相似文献   

6.
An antipodal Vivaldi antenna (AVA) with band-notched characteristics is proposed in this paper for ultra-wideband (UWB) applications. For UWB systems, there will be some interference from the narrow band systems. The proposed antenna adopts resonant parallel strip (RPS) to reject an unwanted narrow band. It is easy to tune the RPS to eliminate the interference band. To validate this approach, a printed AVA with RPS is simulated and fabricated. From 2 to 9 GHz, the proposed antenna shows a good result with approximate 2:1 VSWR, an average gain of 6.5 dB, and stable radiation patterns except the notched band. At the center frequency of the notched band, the measured results show that the VSWR is more than 8:1, the realized gain is less than −10 dB and a messy radiation pattern is achieved. The simulated and measured results are in good agreement.  相似文献   

7.
This article presents a small, low-profile planar microstrip antenna that is applicable for both WLAN and WiMAX applications. The goal of this paper is to design an antenna which can excite triple-band operation with appreciable impedance bandwidth to combine WLAN/WiMAX communication specifications simultaneously in one device. The designed antenna has a compact size of 10 × 26 mm2. The proposed antenna consists of an inverted U-shaped slot radiator and a defected ground plane. Overall the design method and parametric study found appropriate dimensions, which provides three distinct bands I from 2.40 to 2.52, II from 3.40 to 3.60 and III from 5.00 to 6.00 GHz that covers entire WLAN (2.4/5.2/5.8 GHz) and WiMAX (2.5/3.5/5.5) bands. Finally, a prototype antenna was fabricated and experimentally characterized to verify the design concept as well as to validate the simulation results. Thus the simulation results along with the measurements show that the antenna can simultaneously operate over WLAN and WiMAX frequency bands.  相似文献   

8.
In this paper, we propose an aperture type frequency selective surface (FSS) by employing an array of 12 × 12 unit cell elements and its resonant characteristics is analyzed. A resonant cavity antenna is then formed by the ground plane substrate and the FSS superstrate. The high reflective behavior of the proposed FSS at an offset of the resonance is then utilized for improving the performance of this cavity antenna. The impedance bandwidth and directivity are improved up to 0.66 GHz and 8.95 dBi, simultaneously at an optimum gap of 17.6 mm between the antenna substrate and FSS superstrate. For validation purpose, prototypes of both patch antenna and FSS, are fabricated and characterized. A fairly good agreement is achieved between the measured and simulated results.  相似文献   

9.
A miniaturized microstrip bandpass filter based on a rectangular dual spiral resonator (DSR) is proposed in this paper. The rectangular DSR bandpass filter is centered at 3.65 GHz to suit for Wireless LAN (IEEE802.11y) application. The proposed filter offers transmission zero at the high side of out-of-band response. Across the bandwidth, the measured minimum insertion loss is about 1.7 dB, while the measured return loss is better than 19 dB. Measurement results are good agreement and closed to the simulated ones. The total circuit size of the miniaturized bandpass filter is about 0.145λg by 0.135λg, where λg is the guided wavelength at 3.65 GHz.  相似文献   

10.
A compact, low profile circular fractal patch antenna with low latency, low cost, high speed and multiband is presented. With the help of CST Microwave Studio Suite TM the proposed structure has been designed and analyzed. The simulated results are fixed experimentally. The suggested antenna has dimension of 32 × 36 mm2 (W × L) and operating from 2.93 GHz–9.53 GHz with VSWR  2. The aerial is assembled on FR-4 (εr = 4.4) substrate with a thickness of substrate 1.25 mm. Detailed parametric studies of the antennas have been carried out. This microstrip fed antenna is suitable for ultra wideband (UWB), S, C and part of the X band applications.  相似文献   

11.
The metamaterial and fractal techniques are two main methods for antenna miniaturization and in this paper, we have modeled an especial shape of the antenna based on loop formation with metamaterial load for this aim. The metamaterial layer is made by multi parallel rings and the result shows that the final antenna size reduced drastically while the frequency shifts from 7 to 4 GHz. The antenna has Omni-directional pattern with the gain of 3.5 dBi, so the size is reduced around 40%for 4.5 GHz and another resonance is made at 2.5 GHz with a return lossless than −6 dB with more than 60% frequency shift. The reflection and transmission have been utilized for showing the left hand characteristic based on two port periodic simulations in HFSS full wave software. We show that how the metamaterial load can provide the circular polarization (CP) by controlling the current distribution. We also presented that by making slots we obtained the better Axial Ratio (AR) and miniaturized the antenna with reconfigurable qualification. As a result of fact, we show that by using metasurface we able to miniaturized the antenna and simultaneously achieved the circular polarization.  相似文献   

12.
In the recent years, the strong demand for high performance, low cost and high gain antennas for telecommunication, surveillance, and imaging applications has rapidly grown at microwave and higher frequencies. High speed wireless links require modular, compact size and high directivity with low cross polarization antennas. To demonstrate the proposed concepts and design features, in this paper, a substrate integrated waveguide (SIW) feeding technique has been created having well behaved gain and suitable −10 dB bandwidth from 23.8 GHz to 25.7 GHz (roughly 2 GHz bandwidth), while the impedance bandwidth for VSWR < 2.5 is nearly 3 GHz. The simulated antenna attains 12.5 ± 1 dB gain over majority of K band with an occupied size of 82 mm × 40 mm × 2.54 mm and has roughly 95% radiation efficiency. The proposed antenna is an excellent candidate for integrated low cost K band and even higher frequency systems. The simulations are done by two full wave packages i.e. ANSYS HFSS and CST MWS that associated with finite element method (FEM) and finite difference time domain (FDTD), respectively. The results show good agreements between these two methods.  相似文献   

13.
This paper presents compact size 4 × 4 cm2 MIMO antenna for UWB applications. The proposed antenna consists of four symmetric circular elements printed on low cost FR4 substrate with partial slotted ground plane. The two sides of the substrate are symmetric and each side is consisting of two radiators with the partial ground planes associated to the two other elements mounted on the other side. The two elements of the front side are orthogonal to the two other elements of the back side in order to increase the isolation between elements. For further reduction in the mutual coupling between elements, decoupling structures are presented in the top and bottom layers of the substrate. The simulated and measured results are investigated to study the effectiveness of the MIMO-UWB antenna. The results demonstrate the satisfactory performance of MIMO-UWB antenna, which has a return loss less than −10 dB from approximately 3.1 GHz to more than 11 GHz with an insertion loss lower than −20 dB through the achieved frequency band, and a correlation less than 0.002. Moreover, the proposed MIMO model exhibits a nearly omni-directional radiation pattern with almost constant gain of average value 3.28 dBi.  相似文献   

14.
This paper presents a compact semi circular monopole antenna loaded with Complementary Split Ring Resonator (CSRR) and two C-shaped slots is proposed for Global System for Mobile Communication (GSM), Worldwide Interoperability for Microwave Access (WiMAX) and C-band applications. The size of the proposed antenna is 20 × 20 × 0.5 mm3. The resonance frequency of WiMAX (3.73 GHz) is achieved by introducing CSRR slots on the ground plane. To realize multiband characteristics for GSM (1.77 GHz), WiMAX (2.6 GHz) and C-band (4.15 GHz), two C-shaped slots of quarter wavelength are introduced in radiating element. The extraction procedure of negative permittivity for the proposed CSRR is discussed in detail. The proposed antenna is fabricated and measured. Simulated and measured results are in good agreement. Omni directional radiation pattern is obtained in H-plane and bi directional radiation pattern is obtained in E-plane. Parametric study of CSRR and C-shaped slot are examined to obtain best results. The proposed antenna has significant advantages, including low profile, miniaturization ability, and good impedance matching.  相似文献   

15.
A miniaturized multiband monopole antenna based on rectangular-shaped Complementary Split Ring Resonators (CSRRs) with offset-fed microstrip line is proposed for Global System for Mobile Communication (GSM) and Wireless Local Area Network (WLAN) applications. The proposed antenna is fabricated on a FR-4 substrate having a dielectric constant (ɛr) of 4.4 within a small size of 19.18 × 22.64 × 1.6 mm3. CSRRs in the monopole antenna create a multiband characteristics and bandwidth improvement, which is analyzed by use of the precise quasi-static design equations and electromagnetic simulation software (HFSS version 13). By selecting a proper offset-fed microstrip line, it is capable to achieve 50 Ω characteristic impedance and good impedance matching. The parameter extraction procedure of the metamaterial property of the CSRRs is enlightened in detail, by which the negative permittivity existence and the new resonance frequencies are verified. Simulated and measured result coincides with each other. The measured H-Plane (azimuthal plane) exhibits omnidirectional radiation pattern and E-plane (elevation plane) shows a dipole like bidirectional radiation pattern. The proposed antenna has adequate advantages, including simple design, small size, lower return loss and capable of multiband operations.  相似文献   

16.
In this paper, a modified broadband bow-tie antenna with low cross-polarization level and miniaturization is presented. The cross-polarization in both E- and H-planes are suppressed by defecting the antenna flares using rectangular slots. The proposed modified antenna demonstrated a cross-polarization improvement over ±120° around the boresight from 2 to 5 GHz. In addition, an overall 23.5% of miniaturization compared to conventional bow-tie antenna is achieved. A tapered feed transition between microstrip-to-parallel stripline is designed to match 50 ohm SMA connector to the antenna flares. A prototype of the modified antenna is fabricated on RO4003 substrate (εr = 3.38, tan δ = 0.0027, h = 0.813 mm), and its performance is experimentally studied. The antenna’s characteristics including return loss, gain and radiation pattern are measured, along with the time domain characteristics, and showed reasonable agreement with the simulated results.  相似文献   

17.
This paper presents the design of a modified ground apollonian ultra wideband (UWB) fractal antenna. The printed fractal antenna has been designed on a substrate with dielectric constant ?r = 4.3 and thickness h = 1.53 mm. The antenna has been fabricated with optimized dimension and tested. The experimental result of this antenna exhibits UWB characteristics from frequency range 3 GHz to 18 GHz. This corresponds to 142.86% impedance bandwidth with center frequency of 10.5 GHz. The experimental radiation patterns of this antenna are nearly omni-directional in H-plane and bidirectional in E-plane. The effect of various design parameters on UWB characteristics have also been analyzed using a 3D electromagnetic simulator based on FEM method. The simulated and experimental results are in good agreement. The backscattering RCS of this UWB fractal antenna is better than ?31 dB throughout the FCC band (3.1 GHz to 10.6 GHz). The proposed coplanar waveguide feed appollian fractal antenna can be easily integrated with radio-frequency/microwave circuitry with low-manufacturing cost and useful for UWB applications.  相似文献   

18.
In this article, an Ultra Wide Band (UWB) monopole antenna based on Metamaterial (MTM) unit cell with reconfigurable feature has been developed. The proposed antenna covers 3.1–10.6 GHz for UWB applications and it has a reconfigurable narrow-band for L-band (1.27 GHz) and wireless applications. The gaps in Split Rings Resonator (SRR) element are made for the Left-hand capacitance and Ω-shape strip layer by four via junctions are used for Left-hand inductance. The antenna is printed on FR-4 low cost substrate with relative permittivity of 4.4 and thickness of 1.6 mm. The total size of the antenna is 40 mm × 40 mm. The simulation is carried out using HFSS commercial full-wave software. In addition, the experimental results are presented and compared with simulated results. The antenna gives a maximum peak gain of 6 dBi with Omni-Directional radiation pattern and high efficiency of more than 70%. By embedding four switches in Ω-shape strip layer, a reconfigurable antenna has been successfully designed for wireless applications with sufficient qualification. The monopole part covers the UWB spectrum and the CRLH is responsible for the controllable narrowband resonance. The simulation and experimental results are confirmed by the numerical results.  相似文献   

19.
In this paper, a novel quasi-lumped element resonator antenna is presented. The proposed antenna consists of the interdigital capacitor in parallel with a straight line inductor and is fabricated on Duroid RC4003C circuit board. The entire arrangement was fed by a coaxial feed at a frequency of 5.8 GHz. The size, bandwidth and radiation patterns were studied. The proposed antenna exhibits better impedance bandwidth and significant size reduction in comparison with similar results obtained from the conventional microstrip patch antenna with similar feeding technique and resonant frequency. The size of the proposed antenna structure is 5.8 × 5.6 mm2 and experimental results are shown to be in good agreement with the design simulation.  相似文献   

20.
A compact and low-profile patch antenna with a simple structure is presented for the wireless local-area network (WLAN) and the wireless access in the vehicular environment (WAVE) applications. The proposed antenna with an overall size of only 23 mm × 25 mm is fed by a coplanar waveguide (CPW), and yields 10-dB impedance bandwidths of about 250 MHz centered at 2.44 GHz and of about 22% ranging from 5.13 to 6.38 GHz suitable for the WLAN 2.4/5.2/5.8 GHz and the WAVE 5.9 GHz (IEEE 802.11p) applications. Also, good dipole-like patterns and high average antenna gain of ≥2.3 dBi over the operating bands have been obtained. In this design, resonance can be effectively controlled by simply tuning the shaped slots on the patch. Mechanism of mode excitations and effect of the added slot's length on resonance for the proposed antenna are examined and discussed in detail. The experimental results have validated the proposed design as useful for modern mobile communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号