首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new solution-processable star-shaped D-π-A molecule with triphenylamine (TPA) as core and donor unit, dicyanovinyl (DCN) as end group and acceptor unit, and 3,6-dihexyl-thieno[3,2-b]thiophene (DHT) as π bridge, S(TPA-DHT-DCN) was synthesized for the application as donor material in solution-processed bulk-heterojunction organic solar cells (OSCs). The compound exhibits broad absorption in the visible region with suitable energy levels, which are desirable for application as a donor material in organic solar cells. The OSC devices based on S(TPA-DHT-DCN) as the donor and PC71BM as the acceptor (1:2, w/w) exhibited power conversion efficiency (PCE) of 2.87%, with high open circuit voltage (Voc) of 0.96 V, short circuit current density (Jsc) of 6.80 mA/cm2, and fill factor (FF) of 43.5%, under the illumination of AM.1.5, 100 mW/cm2. The Voc of 0.96 V for S(TPA-DHT-DCN) is among the top values for the solution-processed molecular-based OSCs reported so far.  相似文献   

2.
Donor-σ-acceptor molecules of HPBT-n(PDI) (n = 1, 2, and 4) containing perylene diimide (PDI) and π-extended 1,2,4,5-tetrakis((E)-2-(5′-hexyl-2,2′-bithiophen-5-yl)vinyl)benzene (HPBT) have been successfully synthesized for studying the self-organization of each moiety and their applications in photovoltaic devices. Interesting features were found in these molecules: the aggregation-induced crystallization in the HPBT moieties enhanced the power conversion efficiency (PCE) in the photovoltaic cell. By incorporating HPBT as the donor and PDI as the acceptor moiety, we anticipated that their high degree of independent aggregation-induced crystallization would yield electron/hole transport channels and high mobility in the desired direction of charge transport. In a photovoltaic device, HPBT-1(PDI) gave a PCE of 0.22% with an open circuit voltage ranging from 0.62 to 0.63 V. When the HPBT moiety was more hindered by the PDI moiety, less PCE was observed in HPBT-2(PDI). Addition of methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) resulted in enhancement of the PCE due to enhanced visible absorption. The device bearing HPBT-1(PDI) and PCBM (1:4 mol ratio) demonstrate much higher PCE to be around 1.60%.  相似文献   

3.
Two non-fullerene small molecule acceptors (TFQ-F and TFQ-Cl) based on quinoxaline unit were designed and synthesized for efficient organic solar cells (OSCs). These two acceptors showed intense absorption up to 900 nm and high thermal stabilities with decomposition temperatures over 360 °C due to their fused-ring skeletons. TFQ-F and TFQ-Cl are the A-D-A′-D-A type acceptors (A/A′ for acceptor unit and D for donor unit). TFQ-F and TFQ-Cl have the same D-A′-D fragment, which was flanked with different ending groups. The effect of different ending groups on their photophysical properties, electrochemical behaviors, micro-structures and charge recombination properties of active layers, and device performance were investigated systematically. PM6 with the complementary absorption to the two acceptors was used as the donor material. The pristine PM6:TFQ-F blend films displayed the optimal morphologies as revealed by AFM and TEM measurement. Organic solar cells based on PM6:TFQ-Cl blend film showed high JSC of 25.19 mA/cm2 and PCE of 13.2%. The Voc, JSC and PCE for PM6:TFQ-F film based device were 0.857 V, 23.70 mA/cm2 and 13.51%, respectively. The dependence of VOC/JSC on various light intensities indicated that PM6:TFQ-F/Cl based device had low charge recombination.  相似文献   

4.
The aggregation/crystallinity of classic n‐type terpolymers based on naphthalene diimide and perylene diimide is challenging to tune due to their rigid and extended cores, leading to suboptimal film morphology. A new strategy for developing high‐performance n‐type terpolymers by incorporating imide‐functionalized heteroarenes is reported here to balance crystallinity and miscibility without sacrificing charge carrier mobilities. The introduction of thienopyrroledione (TPD) into the copolymer f‐BTI2‐FT results in a series of terpolymers BTI2‐xTPD having distinct TPD content. The irregular backbone reduces crystallinity, yielding improved miscibility with the polymer donor. More importantly, TPD triggers noncovalent S?O interactions, increasing backbone planarity and in‐chain charge transport. Such interactions also promote face‐on polymer packing. As a result, all‐polymer solar cells (all‐PSCs) based on BTI2‐30TPD achieve an optimal power conversion efficiency (PCE) of 8.28% with a small energy loss (0.53 eV). This efficiency is substantially higher than that of TPD (4.4%) or a BTI2‐based copolymer (6.8%) and is also the highest for additive‐free all‐PSCs based on a terpolymer acceptor. Moreover, the BTI2‐30TPD cell exhibits excellent stability with the PCE retaining 90% of its initial value after 400 h of aging. The results demonstrate that random polymerization using imide‐functionalized heteroarenes is a powerful approach to develop terpolymer acceptors toward efficient and stable all‐polymer solar cell PSCs.  相似文献   

5.
Two n-type conjugated D-A copolymers with perylene diimide (PDI) as acceptor unit and benzodithiophene (BDT) as donor unit, P(PDI-BDT-Ph) and P(PDI-BDT-Th), were synthesized and applied as electron acceptor in all-polymer solar cells (all-PSCs). P(PDI-BDT-Ph) and P(PDI-BDT-Th) films exhibit similar absorption spectra in the visible region with optical bandgap (Eg) of 1.65 eV and 1.55 eV respectively, and the identical LUMO level of −3.89 eV. The all-PSCs based on P(PDI-BDT-Ph) as acceptor and PTB7-Th as donor demonstrated a power conversion efficiency (PCE) of 4.31% with a short-circuit current density (Jsc) of 11.94 mA cm−2, an open-circuit voltage (Voc) of 0.81 V, and a fill factor (FF) of 44.49%. By contrast, the corresponding all-PSCs with P(PDI-BDT-Th) as acceptor showed a relative lower PCE of 3.58% with a Jsc of 11.36 mA cm−2, Voc of 0.79 V, and FF of 40.00%.  相似文献   

6.
A series of chiral stereoisomers of electron transporting materials with two chiral substituents is rationally designed and synthesized, and the influence of stereoisomerism on their physical and electronic properties is investigated to demonstrate highly efficient and stable perovskite solar cells (PSCs). Compared to mesomeric naphthalene diimide (NDI) derivatives, which have heterochiral side groups with centrosymmetric molecular packing of symmetric‐shaped conformers in the crystalline state, enantiomeric NDI derivatives have homochiral side groups that exhibit non‐centrosymmetric molecular packing of asymmetric‐shaped conformers in the crystalline state and exhibit better solution processability based on one order of magnitude higher solubility. A similar trend is observed in different rylene diimide stereoisomers based on larger semiconducting core perylene diimide. The PSCs based on NDI enantiomers with good film‐forming ability and a very high lowest phase transition temperature (Tlowest) of 321 °C exhibit a high and uniform average power conversion efficiency (PCE) of 19.067 ± 0.654%. These PSCs also have a high temporal device stability, with less than 10% degradation of the PCE at 100 °C for 1000 h without encapsulation. Therefore, chiral stereoisomer engineering of charge transporting materials is a potential approach to achieve high solution processability, excellent performance, and significant temporal stability in organic electronic devices.  相似文献   

7.
Two molecules based on triptycene and perylene diimide (PDI) were designed and synthesized as non-fullerene acceptors for organic solar cells (OSCs). The bay-substituted and the imide-substituted molecules, named as TPBA and TPI, respectively, have rigid three-dimensional backbones, which improved the morphological compatibility with the donor polymers. TPBA and TPI exhibit suitable energy levels as acceptors and efficient absorption in the range of 450–600 nm. Their blended films with PTB7-Th displayed power conversion efficiencies of 2.80% and 3.64%, respectively.  相似文献   

8.
A C2v-symmetric core, dithienocyclopentaspiro[fluorene-9,9′-xanthene], was used as the central block for the first time to design and synthesize A-D-A type small molecule acceptors for nonfullerene polymer solar cells (PSCs), and two new small molecule acceptors of TSFX-2F and TSFX-4F were synthesized based on the C2v-symmetric core. The two TSFX-based acceptors show high thermal stability, strong absorption in the wavelength region of 550–750 nm and appropriate energy levels. The PSCs with the broad bandgap polymer J71 as donor and TSFX-2F as acceptor demonstrated power conversion efficiency (PCE) of 9.42% with open circuit voltage (Voc) of 0.89 V, short circuit current density (Jsc) of 15.27 mA cm−2 and fill factor (FF) of 69.30%, while the PSC based on J71:TSFX-4F shows a PCE of 8.47% with Voc of 0.83 V, Jsc of 15.48 mA cm−2 and FF of 66.16%. The higher Voc of the PSC based on J71: TSFX-2F is benefitted from the up-shifted LUMO energy level of the TSFX-2F acceptor, and its higher FF can be ascribed to the higher and more balanced hole and electron mobilities of the J71: TSFX-2F active layer. This work demonstrates that the new C2v-symmetric building block is a promising central D-unit for the design and synthesis of new structured norfullerene acceptors for high-performance PSCs.  相似文献   

9.
Semitransparent solar cells (SSCs) can open photovoltaic applications in many commercial areas, such as power‐generating windows and building integrated photovoltaics. This study successfully demonstrates solution‐processed small molecule SSCs with a conventional configuration for the presently tested material systems, namely BDTT‐S‐TR:PC70BM, N(Ph‐2T‐DCN‐Et)3:PC70BM, SMPV1:PC70BM, and UU07:PC60BM. The top transparent cathode coated through solution processes employs a highly transparent silver nanowire as electrode together with a combination interface bilayer of zinc oxide nanoparticles (ZnO) and a perylene diimide derivative (PDINO). This ZnO/PDINO bilayer not only serves as an effective cathode buffer layer but also acts as a protective film on top of the active layer. With this integrated contribution, this study achieves a power conversion efficiency (PCE) of 3.62% for fully solution‐processed SSCs based on BDTT‐S‐TR system. Furthermore, the other three systems with various colors exhibited the PCEs close to 3% as expected from simulations, demonstrate the practicality and versatility of this printed semitransparent device architecture for small mole­cule systems. This work amplifies the potential of small molecule solar cells for window integration.  相似文献   

10.
A new star-shaped D–π–A molecule, tris{4-[5′′-(1,1-dicyanobut-1-en-2-yl)-2,2′-bithiophen-5-yl]phenyl}amine N(Ph-2T-DCN-Et)3, with high efficiency potential for photovoltaic applications was synthesized. As compared to its analogue S(TPA-bT-DCN), it showed stronger absorption in the region of 350–450 nm and a lower lying highest occupied molecular energy level (HOMO). Solution-processed organic solar cells (OSCs) based on a blend of N(Ph-2T-DCN-Et)3 and PC70BM resulted in a high PCE of 3.1% without any post-treatment. The PCE of N(Ph-2T-DCN-Et)3 based solar cells was further improved to 3.6% under simulated AM 1.5 by addition of a new additive 4-bromoanisole (BrAni).  相似文献   

11.
Power conversion efficiency (PCE) of organic photovoltaics (OPVs) lags behind of inorganic photovoltaics due to low dielectric constants (ε r) of organic semiconductors. Although OPVs with high ε r are attractive in theory, practical demonstration of efficient OPV devices with high‐ε r materials is in its infancy. This is largely due to the contradiction between the requirements of high ε r and good donor:acceptor blend morphology in the bulk heterojunction. Herein, a series of fullerene acceptors is reported bearing a polar cyano moiety for both high ε r and good donor:acceptor blend morphology. These cyano‐functionalized acceptors (ε r = 4.9) have higher ε r than that of the widely used acceptor, [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) (ε r = 3.9). The high ε r is realized without decrease of electron mobility and change of the lowest unoccupied molecular orbital/highest occupied molecular orbital (LUMO/HOMO) energy levels. Although the cyano‐functionalized acceptors have increased polarity, they still exhibit good compatibility with the typical donor polymer. Polymer solar cells based on the cyano‐functionalized acceptors exhibit good active layer morphology and show better device performance (PCE = 5.55%) than that of PC61BM (PCE = 4.56%).  相似文献   

12.
A series of perylene diimide (PDI) derivatives, TPP‐PDI , TPO‐PDI , and TPS‐PDI , are developed for nonfullerene polymer solar cells (NF‐PSCs) by flaking three PDI skeletons around 3D central cores with different configurations and electronic states, such as triphenylphosphine (TPP), triphenylphosphine monoxide (TPO), and triphenylphosphine sulfide (TPS). These small‐molecule acceptors have a “three‐wing propeller” structure due to their similar backbones. By changing the electron density of phosphorus atoms through oxidation and sulfuration, the “folding‐back” strength is decreased, resulting in a less twisted molecular conformation. The stronger electron‐withdrawing ability of the oxygen atom affords TPO‐PDI the least twisted conformation, which enhances the crystallinity of this complex. NF‐PSCs based on PTTEA : TPO‐PDI exhibit a high power conversion efficiency (PCE) of 8.65%. Ultimately, the joint “molecular lock” effect arising from O? H???F and O? H???O?P supramolecular interactions is achieved by introducing 4,4′‐biphenol as an additive, which successfully promotes fibril‐like phase separation and blend morphology optimization to generate the highest PCE of 11.01%, which is currently the highest value recorded for NF‐PSCs based on PDI acceptors.  相似文献   

13.
Twisted benzodiperylenediimides (TBDPDI) with large rigid conjugated core and strong absorption is regarded as an excellent acceptor in non-fullerene solar cells. Since side chains of semiconductors play a crucial role in the solar cells, TBDPDI acceptors with different side chains (1-ethylpropyl, C5; 2-ethylhexyl, C8; 1-pentylhexyl, C11; 2-octyldodecyl, C20; 1-undecyldodecyl, C23) were synthesized. In solution, TBDPDI compounds (C5, C11, and C23) with alkyl chains branched at 1-position show significantly different absorption profiles and fluorescence intensity with those (C8 and C20) branched at 2-position, due to stronger aggregation of the latter. Nevertheless, alkyl chains have little effect on the molecular orbital energy levels and optical band gaps, as verified by cyclic voltammetry and solid state absorption. Due to their complementary absorption and matchable energy levels with donor of PCE10, these acceptors and PCE10 were used together to fabricate bulk heterojunction (BHJ) solar cells. Because of inferior phase separation with large domain size around 100 nm and bulky insulated side chains, acceptors (C20 and C23) with long alkyl chains have the low electron mobility (μe) around 10−8 cm2 V−1 s−1 and the low power conversion efficiency (PCE) of solar cells. TBDPDI (C11) with 1-pentylhexyl gives the highest PCE of 5.0% under the optimized condition, which is attributed to proper phase separation with domain size around 20 nm and highest μe of 10−6 cm2 V−1 s−1.  相似文献   

14.
Electron-deficient central core plays a crucial role in the construction of efficient Y-series non-fullerene acceptors (NFAs). Here, fused-ring benzimidazole (BIm) served as a central core for the first time to yield a new NFA named MZ-1 and its structural analogue named MZ-2, which is obtained by replacing the methyl group on the 2C position of BIm in MZ-1 with trifluoromethyl group. Compared with MZ-1, MZ-2 shows obviously blue-shifted absorption and lowers the highest occupied molecular orbital (HOMO) energy level that is more matched to that of polymer donor PM6. Benefiting from the more efficient charge transport and favorable microphase separation morphology of the active layer, the acceptor MZ-2-based device affords an excellent power conversion efficiency (PCE) of 17.31% along with a high open-circuit voltage (Voc) of 0.903 V, a short-circuit current density (Jsc) of 26.32 mA cm−2 and a fill factor (FF) of 72.83%, which is remarkably superior to that of MZ-1-based devices with PCE of 10.70%. This study offers valuable insight into the design of acceptors to enrich Y series NFAs for high-performance organic solar cells (OSCs).  相似文献   

15.
《Organic Electronics》2014,15(6):1189-1196
The fabrication of small-molecule bulk-heterojunction solar cells utilizing a mixed donor material composed of two types of soluble phthalocyanine derivatives with different substituent length has been studied. The power conversion efficiency (PCE) and short-circuit current density (Jsc) of the solar cells fabricated using the mixed donor material with an optimized mixture ratio reached 3.8% and 9.2 mA/cm2, respectively, which were superior to those of organic solar cells utilizing each type of phthalocyanine derivative as a single donor material. The improvement of PCE and Jsc has been discussed from the viewpoints of the miscibility and carrier transport properties of the mixed donor material.  相似文献   

16.
A new solution processable small molecule (DPP-CN) containing electron donor diketopyrrolopyrrole (DPP) core and cyanovinylene 4-nitrophenyl (CN) electron acceptor has synthesized for use as the donor material in the bulk heterojunction organic solar cells along with PCBM, modified PCBM i.e. F and A as electron acceptor. It showed a broad absorption in longer wavelength region having optical band gap around 1.64 eV. We have used PCBM, F and A as electron acceptor for the fabrication of bulk heterojunction photovoltaic devices. The power conversion efficiency (PCE) of the BHJ devices based on DPP-CN:PCBM, DPP-CN:F and DPP-CN:A blends cast from the THF solvent is 1.83%, 2.79% and 2.83%, respectively. The increase in the PCE based on F and A as electron acceptor is mainly due to the increase in both short circuit current (Jsc) and open circuit voltage (Voc). The PCE value of the photovoltaic devices based on the blends DPP-CN:PCBM, DPP-CN:F and DDP-CN:A cast from the mixed solvents (DIO/THF) has been further improved up to 2.40%, 3.32% and 3.34%, respectively. This improvement is mainly due to the increased value of Jsc, which is attributed not only to the increase of crystallinity, but also to the morphological change in the film cast from mixed solvent. Finally, the device ITO/PEDOT:PSS/DPP-CN:A (DIO/THF cast)/TiO2/Al device shows a PCE of 3.9%. The improved device performance could be attributed to the electron transporting and hole-blocking capabilities due to the introduced TiO2 buffer layer.  相似文献   

17.
A new asymmetric small molecule, named R3T-TBFO, with 4,8-bis(2-ethylhexyloxy)-substituted thieno[2,3-f]benzofuran (TBF) as central donor block, has been synthesized and used as donor material in organic solar cells (OSCs). With thermal annealing (TA) and solvent vapor annealing (SVA) treatment, the blend of R3T-TBFO/PC71BM shows a higher hole mobility of 1.37 × 10−4 cm2 V−1 s−1 and a more balanced charge mobilities. Using a structure of ITO/PEDOT:PSS/R3T-TBFO:PC71BM/ZrAcac/Al, the device with TA treatment delivered a moderate power conversion efficiency (PCE) of 5.63%, while device after TA + SVA treatment showed a preferable PCE of 6.32% with a high fill factor (FF) of 0.72.  相似文献   

18.
A fluorene-centered perylene monoimide dimer, PMI-F-PMI with a partly non-coplanar configuration has been developed as a potential non-fullerene acceptor for organic solar cells (OSCs). The optimum power conversion efficiency (PCE) of the OSC based on PMI-F-PMI as acceptor and poly (3-hexyl thiophene) (P3HT) as donor is up to 2.30% after annealing at 150 °C. The PCE of 2.30% is the highest value for the OSCs based on P3HT donor and non-fullerene acceptor lies in that PMI-F-PMI’s lowest unoccupied molecular orbital (LUMO) level around −3.50 eV matches well with the donor P3HT to produce higher open-circuit voltage (Voc) of 0.98 V. Meanwhile, PMI-F-PMI makes remarkable contribution to devices’ light absorption as the maximum EQE (30%) of the devices is at 512 nm, same to the maximum absorption wavelength of PMI-F-PMI. The other favorable characteristics of PMI-F-PMI in bulk heterojunction (BHJ) active layers is proved through the photo current density measures, the relatively balanced electron–hole transport, and the smooth morphology with root mean square (RMS) value of 1.86 nm. For these advantages, PMI-F-PMI overwhelms its sister PMI-F and parent PMI as an acceptor in BHJ solar cells.  相似文献   

19.
To investigate the effect of the fluoride phenyl side-chains into quinoxaline (PQx) unit on the photovoltaic performances of polymers, we demonstrated the synthesis and characterization of two novel wide-bandgap (WBG) copolymers, PIDT-DTPQx and PIDT-DTFPQx, in which indacenodithiophene (IDT), 2,3-diphenylquinoxaline (PQx) (and/or 2,3-bis(4-fluorophenyl)quinoxaline (FPQx)) and thiophene (T) were used as the donor (D) unit, acceptor (A) unit and π-bridge, respectively. Compared to the non-fluorine substituted PIDT-DTPQx, fluorine substituted PIDT-DTFPQx presents a deep HOMO energy level and a high hole mobility. Obviously, improved the Voc, Jsc, and FF simultaneously, giving rise to overall efficiencies in the PIDT-DTFPQx/PC71BM-based PSCs. A highest PCE of 5.78% was obtained with a Voc of 0.86 V, Jsc of 10.84 mA cm−2 and FF of 61.7% in the PIDT-DTFPQx/PC71BM-based PSCs, while PIDT-DTPQx based devices also demonstrated a PCE of 5.11%, under the illumination of AM 1.5G (100 mW cm−2). Note that these PCE values were achieved for PSCs without any extra treatments. Furthermore, these optimal devices have a film thickness of about 175 nm for the polymer/PC71BM-based active layers. The results provide that introduction of the fluorine atom into quinoxaline unit by side-chain engineering is one of the effective strategies to construct the promising polymer donor materials for future application of large-area polymer solar cells.  相似文献   

20.
Two new conjugated D–A polymers P3 (PBTT-d-BTT) and P4 (PBTT-d-TPD) based on same benzo[1,2-b:3,4-b′:6,5-b″] trithiophene (BTT) donor and different acceptors monomers 5,8-dibromo-2-dodecanoylbenzo[1,2-b:3,4-b′:6,5-b″] trithiophene (d-BTT), and 1,3-dibromo-5-(2-ethylhexyl)thieno[3,4]pyrrol-4,6-dione (d-TPD) respectively, were synthesized by Stille cross-coupling reaction and characterized by gel permeation chromatography (GPC), 1H NMR, UV–Vis absorption, thermal analysis and electrochemical cyclic voltammetry (CV) tests. Photovoltaic properties of the polymers were studied by using the polymers as donor and PC71BM as acceptor with a weight ratio of polymer:PC71BM 1:1, 1:2 and 1:2.5. The optimized photovoltaic device was fabricated with an active layer of a blend P3:PC71BM and P4:PC71BM with a blend ratio of 1:2 showed PCE 3.16% and 2.42%, respectively under illumination of AM 1.5 at 100 mW/cm2 with solar simulator. The PCE of the device based on P3:PC71BM processed with DIO/o-DCB has been further improved up to 4.64% with Jsc of 10.52 mA/cm2 and FF of 0.58 attributed to the increase in crystalline nature of active layer and more balanced charge transport in the device, induced by DIO additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号