首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this two-part study, uniaxial tensile testing was used to evaluate coating/substrate bonding and compared with traditional ASTM C633 bond pull test results for thermal spray (TS) coated steel laminates. In Part I, the rationale, methodology, and applicability of the test to high-velocity TS coatings were demonstrated. In this Part II, the method was investigated for low-velocity TS processes (air plasma spray and arc spray) on equivalent materials. Ni and Ni-5wt.%Al coatings were deposited on steel substrates with three different roughness levels and tested using both uniaxial tensile and ASTM C633 methods. The results indicate the uniaxial tensile approach provides useful information about the nature of the coating/substrate bonding and goes beyond the traditional bond pull test in providing insightful information on the load sharing processes across the interface. Additionally, this proposed methodology alleviates some of the longstanding shortcomings and potentially reduces error associated with the traditional ASTM C633 test. The mechanisms governing the load transfer between the substrate and the coating were investigated, and the influence of Al in the coating material evaluated.  相似文献   

2.
Adhesion of thermal spray (TS) coatings is an important system level property in coating design and application. Adhesive-based pull testing (ASTM C633) has long been used to evaluate coating/substrate bonding. However, this approach is not always suitable for high velocity spray coatings, for example, where adhesion strengths are routinely greater than the strength of the adhesive bonding agent used in the testing. In this work, a new approach has been proposed to evaluate the adhesion of TS coatings. A systematic investigation of the effects of substrate roughness on both the uniaxial tensile yield strength and traditional bond pull adhesive strength of HVOF Ni and Ni-5wt.%Al, as well as cold-sprayed Ni-coated laminates revealed a strong correlation between these two test methodologies for the respective materials and processes. This approach allows measurement of the adhesion response even where the adhesive method is not applicable, overcoming many of the issues in the traditional ASTM C633. Analysis of cracking patterns of the coatings after 10.5% strain was used to assess the adhesion and cohesion properties. The mechanisms which determine the load transfer between the substrate and the coating are also briefly discussed.  相似文献   

3.
Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire–high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).  相似文献   

4.
Deposition behavior and deposition efficiency were investigated for several aluminum–alumina mixture compositions sprayed by cold spray. An increase in deposition efficiency was observed. Three theories postulated in the literature, explaining this increase in deposition efficiency, were investigated and assessed. Through finite element analysis, the interaction between a ceramic particle peening an impacting aluminum particle was found to be a possible mechanism to increase the deposition efficiency of the aluminum particle, but a probability analysis demonstrated that this peening event is too unlikely to contribute to the increment in deposition efficiency observed. The presence of asperities at the substrate and deposited layers was confirmed by a single-layer deposition efficiency measurement and proved to be a major mechanism in the increment of deposition efficiency of the studied mixtures. Finally, oxide removal produced by the impact of ceramic particles on substrate and deposited layers was evaluated as the complement of the other effects and found to also play a major role in increasing the deposition efficiency. It was found that the coatings retained approximately half of the feedstock powder alumina content. Hardness tests have shown a steady increase with the coating alumina content. Dry wear tests have revealed no improvement in wear resistance in samples with an alumina content lower than 22 wt.% compared to pure aluminum coatings. Adhesion strength showed a steady improvement with increasing alumina content in the feedstock powder from 18.5 MPa for pure aluminum coatings to values above 70 MPa for the ones sprayed with the highest feedstock powder alumina content.  相似文献   

5.
Plasma spray–physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma–feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma–feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen’s drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of ~3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.  相似文献   

6.
Review on Cold Spray Process and Technology: Part I—Intellectual Property   总被引:1,自引:0,他引:1  
The number of research papers as well as of patents and patent applications on cold spray and cold spray related technologies has grown exponentially in the current decade. This rapid growth of activity brought a tremendous amount of information on this technology in a short period of time. The main motivation for this review is to summarize the rapidly expanding common knowledge on cold spray to help researchers and engineers already or soon to be involved for their future endeavors with this new technology. Cold spray is one of the various names for describing an all-solid-state coating process that uses a high-speed gas jet to accelerate powder particles toward a substrate where they plastically deform and consolidate upon impact. Cold gas dynamic spray, cold spray, kinetic spray, supersonic particle deposition, dynamic metallization or kinetic metallization are all terminologies found in the literature that designate the above-defined coating process. This review on cold spray technology is divided into two parts. In this article, Part I, patents and patent applications related to this process are reviewed, starting from the first few mentions of the idea at the beginning of the 20th century to its practical discovery in Russia in the 1980s and its subsequent occidental development and commercialization. The patent review encompasses Russian and USA patents and patent applications. Part II will review the scientific literature giving a general perspective of the current understanding and capability of this process.  相似文献   

7.
R2O3 (R = Y, Eu, Er) metal oxides were synthesized from metal–ethylenediaminetetraacetic acid (EDTA) complexes using a flame spray technique. As this technique enables high deposition rates, films with thickness of several tens of micrometers were obtained. Films of yttria, europia, and erbia phase were synthesized on stainless-steel substrates with reaction assistance by H2–O2 combustion gas. The oxide films consisted of the desired crystalline phase with micropores. The porosity of the films was in the range of 6–15%, varying with the metal used. These results suggest that the true density of the metal oxide obtained from metal–EDTA powder through the thermal reaction process plays an important role in achieving film with the desired porosity.  相似文献   

8.
In Plasma Spray–Physical Vapor Deposition (PS-PVD) process, major fractions of the feedstock powder can be evaporated so that coatings are deposited mainly from the vapor phase. In this work, Computational Fluid Dynamics (CFD) results indicate that such evaporation occurs significantly in the plasma torch nozzle and even nucleation and condensation of zirconia is highly possible there. Experimental work has been performed to investigate the nature of the deposits in the PS-PVD process, in particular coatings from condensate vapor and nano-sized clusters produced at two spraying distances of 1000 mm and 400 mm. At long spraying distance, columns in the coatings have pyramidal tops and very sharp faceted microstructures. When the spraying distance is reduced to 400 mm, the tops of columns become relatively flat and a faceted structure is not recognizable. XRD patterns show obvious preferred orientations of (110) and (002) in the coatings sprayed at 400 mm but only limited texture in the coatings sprayed at 1000 mm. Meanwhile, a non-line of sight coating was also investigated, which gives an example for pure vapor deposition. Based on these analyses, a vapor and cluster depositions are suggested to further explain the formation mechanisms of high-quality columnar-structured PS-PVD thermal barrier coatings which have already shown excellent performance in cyclic lifetime test.  相似文献   

9.
Plasma spray–physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma–particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest (~9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is ~69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of ~15% when applying the plasma composition of 45Ar/45He.  相似文献   

10.
CORROSION wear and protection are the mainsubjects receiving much concern in industrial fields.Corrosion and wear are the main failure of thematerials,which have brought the enormous economiclosses and social danger to the mankind.Thus,it isvery important to prevent,control or lighten thecorrosion of the materials by means of the modemscientific technology economically and safely[1,2^3].In some specific industrial environment,thecoatings are especially useful in applications wherehigh wear …  相似文献   

11.
A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.  相似文献   

12.
In this study the effects of adding yttria-stabilized zirconia (YSZ) reinforcement by mechanical milling method on the oxidation resistance of CoNiCrAlY coatings were investigated. For this purpose 0, 5, 10 and 15% YSZ were mixed with the commercial CoNiCrAlY powder and mechanically milled for 24 h in argon atmosphere. The high-velocity oxygen-fuel method was used for deposition of composite and commercial powders on Inconel 617 substrate. Both commercial and nano-structured coatings were oxidized at 1000 °C for 100 h. Scanning electron microscopy together with energy-dispersive spectroscopy and X-ray diffraction analysis were used for analyzing the oxide scales formed on the coatings surface after oxidation process. The results showed that the porosity of nano-structured coatings was higher than that of the commercial coating, which was related to an undesirable morphology of the feedstock powders. The relatively high porosity of the nano-structured coatings caused the diffusion rate of oxygen into the coatings to be accelerated. On the other hand, a high Al supply due to a large amount of grain boundaries in nano-structured coatings facilitated the formation of an Al2O3 layer on coating’s surface. The undesirable oxidation of splats in nano-structured coatings during spraying resulted in an increased oxidation rate of the coatings.  相似文献   

13.
Thermally sprayed coatings are usually defined by their hardness, porosity, roughness, and wear resistance. Even though the Young’s modulus is an essential property, which describes the mechanical behavior of the coated components during their use, only few efforts have been made in the past to determine this property. The most common measurement methods of the Young’s modulus of thermally sprayed coatings are tensile tests, bending tests, and nanoindentations. During the tensile and bending tests a sliding of the splats can occur due to the laminar structure of the thermally sprayed coatings, influencing the measurement value. When using the nanoindentation test, only the elastic behavior of some splats can be determined because of a minimal measuring volume. However, the Young’s modulus of thermally sprayed coatings can also be determined by means of a resonant method, called impulse excitation technique. In this paper, the values of the Young’s moduli of thermally sprayed coatings, measured by several methods, are compared with each other and correlated to the microstructure of the coatings, investigated by means of scanning electron microscopy.  相似文献   

14.
Hydroxyapatite (HA)–titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA–TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH? and CO3 2? was observed, which was favorable for the biomedical applications.  相似文献   

15.
The corrosion behavior of engine materials of airplanes working in marine environments is accelerated by the synergistic effects of NaCl particles and water vapor at high temperatures. This work examined the corrosion behavior of GH4169 alloy with a NaCl solution spraying at 600 degrees C using an oxidation kinetics test and micro characterization technology in the aspects of corrosion kinetics, corrosion layer phase composition, and microstructure. The weight gain of the GH4169 alloy corroded in the NaCl solution spraying environment was much lower than that in solid NaCl + wet O-2 after 20 h corrosion at 600 degrees C. The corrosion products of the GH4169 alloy in the NaCl solution spray environment were less complex than those in the solid NaCl + wet O-2 environment, but they were denser. In addition, Cl was concentrated in the inner layer of the corrosion products and accelerated the corrosion of GH4169 alloy via an "active oxidation" mechanism at the initial stage. When NaCl deposition was increased, the corrosion mechanism of GH4169 alloy changed gradually to Cl-induced "active oxidation." The sensitivity of GH4169 alloy in the NaCl solution spray environment at 600 degrees C was analyzed. Overall, the sensitivity of elements in GH4169 alloy to chlorine activated corrosion was Ti > Al > Nb, Cr > Fe > Mo, Ni, whereas the sensitivity of the oxides was TiO2 > MoO2 > Cr2O3(Nb2O5) > Fe2O3 > Al2O3 > NiO.  相似文献   

16.
In the plasma spray–physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.  相似文献   

17.
The plasma-sprayed coating architecture and in-service properties are derived from an amalgamation of intrinsic and extrinsic spray parameters. These parameters are interrelated; following mostly non-linear relationships. For example, adjusting power parameters (to modify particle temperature and velocity upon impact) also implies an adjustment of the feedstock injection parameters in order to optimize geometric and kinematic parameters. Optimization of the operating parameters is a first step. Controlling these is a second step and consists of defining unique combinations of parameter sets and maintaining them as constant during the entire spray process. These unique combinations must be defined with regard to the in-service coating properties. Several groups of operating parameters control the plasma spray process; namely (i) extrinsic parameters that can be adjusted directly (e.g., the arc current intensity) and (ii) intrinsic parameters, such as the particle velocity or its temperature upon impact, that are indirectly adjusted. Artificial intelligence (AI) is a suitable approach to predict operating parameters to attain required coating characteristics. Artificial Neural Networks (ANN) and Fuzzy Logic (FL) were implemented to predict in-flight particles characteristics as a function of power process parameters. The so-predicted operating parameters resulting from both methods were compared. The spray parameters are also predicted as a function of achieving a specified hardness or a required porosity level. The predicted operating parameters were compared with the predicted in-flight particle characteristics. The specific case of the deposition of alumina-titania (Al2O3-TiO2, 13% by weight) by APS is considered.  相似文献   

18.
Cold spray is an emerging technology that produces high density metallic coatings with low oxide contents and high thermal conductivity, which makes them ideal for high temperature corrosion resistance. In the current investigation, Ni-20Cr alloy powder was deposited on SA 516 boiler steel (0.19C-1.07Mn-0.020S-0.25P-0.010Si-balance Fe) by cold spray process. Oxidation kinetics was established for the uncoated and cold spray Ni-20Cr coated boiler steel in an aggressive environment of Na2SO4-60%V2O5 at 900 °C for 50 cycles by the weight change technique. X-ray diffraction, FE-SEM/EDAX, and x-ray mapping techniques were used to analyze the oxidation products. Uncoated steel suffered corrosion in the form of intense spalling and peeling of its oxide scale, which may be due to the formation of unprotective Fe2O3 oxides. The Ni-20Cr coating was successful in reducing the weight gain of the steel by 87.2% which may be due to the formation of oxides of nickel and chromium.  相似文献   

19.
This two-part article series reviews the application of thermal spray coating technology in the production of steel and steel sheet products. Part 2 of this article series is dedicated to coating solutions in the continuous galvanizing line. The corrosion mechanisms of Fe- and Co-based bulk materials are briefly reviewed as a basis for the development of thermal spray coating solutions. WC-Co thermal spray coatings are commonly applied to low Al-content galvanizing hardware due to their superior corrosion resistance compared to Fe and Co alloys. The effect of phase degradation, carbon content, and WC grain size are discussed. At high Al concentrations, the properties of WC-Co coatings degrade significantly, leading to the application of oxide-based coatings and corrosion-resistant boride containing coatings. The latest results of testing are summarized, highlighting the critical coating parameters.  相似文献   

20.
Critical properties of TBCs include low thermal conductivity (TC) and high cyclic durability. In recent years, the solution precursor plasma spray (SPPS) process has been effectively used for deposition of TBCs with enhanced cyclic durability for yttria-stabilized zirconia (YSZ) and the higher temperature yttrium aluminum garnet (YAG) TBCs. Improvements in deposition efficiency (DE) and deposition rate (DR) were identified as needed for cost-effective commercialization. In this work, SPPS YAG TBCs with low TC and high DE and DR have been produced with microstructures containing a high density of planar arrays of increased porosity called inter-pass boundaries (IPBs). The IPBs have been shown to reduce the TC of SPPS YAG TBCs by 39% to a value of 0.58 W/mK at 1300 °C. Increasing the precursor feed rates and decreasing the raster scan step heights generate high-density IPB microstructures, while simultaneously increasing the DE and DR by 53 and 190%, respectively. The SPPS YAG microstructures with high-density IPBs also exhibit improved thermal cycling and sinter resistance compared to APS YSZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号