首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness,appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples.  相似文献   

2.
A study on the diffusion kinetics of borides on boronized Cr-based steels   总被引:1,自引:0,他引:1  
In the present study, kinetics of borides formed on AISI H13 hot work tool and AISI 304 stainless steels have been investigated. Boronizing treatment was carried out in slurry salt bath consisting of borax, boric acid and ferrosilicon at temperature range of 1073–1223 K for 3, 5 and 7 h. X-ray diffraction analysis of boride layers on the surface of steels revealed various peaks of FeB, Fe2B, CrB and Ni3B. Metallographic studies revealed that the boride layer has a flat and smooth morphology in the 304 steel while H13 steel was a ragged morphology. Depending on temperature and layer thickness, the activation energies of boron in 304 and H13 steels were found to be 253.35 and 244.37 kJ mol−1, respectively.  相似文献   

3.
In this study, the case properties and diffusion kinetics of AISI 440C and AISI 52100 steels borided in Ekabor-II powder were investigated by conducting a series of experiments at temperatures of 1123, 1173 and 1223 K for 2, 4 and 8 h.The boride layer was characterized by optical microscopy, X-ray diffraction technique and micro-Vickers hardness tester. X-ray diffraction analysis of boride layers on the surface of the steels revealed the existence of FeB, Fe2B and CrB compounds.The thickness of boride layer increases by increasing boriding time and temperature for all steels. The hardness of the boride compounds formed on the surface of steels AISI 52100 and AISI 440C ranged from 1530 to 2170 HV0.05 and 1620 to 1989 HV0.05, respectively whereas Vickers hardness values of untreated steels AISI 440C and AISI 52100 were 400 HV0.05 and 311 HV0.05, respectively. The activation energies (Q) of borided steels were 340.426 kJ/mol for AISI 440C and 269.638 kJ/mol for AISI 52100. The growth kinetics of the boride layers forming on the AISI 440C and AISI 52100 steels and thickness of boride layers were also investigated.  相似文献   

4.
An investigation on boriding kinetics of AISI 316 stainless steel   总被引:1,自引:0,他引:1  
O. Ozdemir  M. Usta  C. Bindal 《Vacuum》2008,83(1):175-179
Boronizing was performed by using a solid medium of Ekabor powders at 1073, 1148 and 1223 K for 2, 4 and 8 h. After boronizing, the major dominant phase was found to be Fe2B and the minors were CrB and Ni2B. Boride coating resulted in smooth and dense feature confirmed by optical and SEM. The thickness of boride layer varied from 7 to 87 μm depending on the process time and temperature. Boride layer has a hardness of over 1700 HVN, while the substrate's hardness was about 180 HVN. The growth kinetics of boride layer was found to obey a parabolic rate demonstrating a solid diffusion limited process. The kinetic rates for different process times were plotted by using Arrhenius equation. From this measurement, the activation energy of boride growth for this study was determined as 199 kJ/mol. In addition, the possibility of predicting the iso-thickness of boride layer variation was studied and an empirical relationship between process parameters and boride layer thickness was established. EDS studies showed that Cr concentrated in the coating layer and Ni and Fe concentrated in the substrate.  相似文献   

5.
In the present study, AISI 8620, 52100 and 440C steels were plasma paste boronized (PPB) by using 100% borax paste. PPB process was carried out in a dc plasma system at temperature of 700 and 800 °C for 3 and 5 h in a gas mixture of 70%H2–30%Ar under a constant pressure of 4 mbar. The properties of boride layer were evaluated by optical microscopy, X-ray diffraction and Vickers micro-hardness tester. X-ray diffraction analysis of boride layers on the surface of the steels revealed FeB and Fe2B phases for 52100 and 8620 steels and FeB, Fe2B, CrB and Cr2B borides for 440C steel. PPB process showed that since the plasma activated the chemical reaction more, a thicker boride layer was formed than conventional boronizing methods at similar temperatures. It was possible to establish boride layer with the same thickness at lower temperatures in plasma environment by using borax paste.  相似文献   

6.
C.K.N. Oliveira 《Vacuum》2010,84(6):792-1588
AISI D2 is the most commonly used cold-work tool steel of its grade. It offers high hardenability, low distortion after quenching, high resistance to softening and good wear resistance. The use of appropriate hard coatings on this steel can further improve its wear resistance. Boronizing is a surface treatment of Boron diffusion into the substrate. In this work boride layers were formed on AISI D2 steel using borax baths containing iron-titanium and aluminium, at 800 °C and 1000 °C during 4 h. The borided treated steel was characterized by optical microscopy, Vickers microhardness, X-ray diffraction (XRD) and glow discharge optical spectroscopy (GDOS) to verify the effect of the bath compositions and treatment temperatures in the layer formation. Depending on the bath composition, Fe2B or FeB was the predominant phase in the boride layers. The layers exhibited “saw-tooth” morphology at the substrate interface; layer thicknesses varied from 60 to 120 μm, and hardness in the range of 1596-1744 HV were obtained.  相似文献   

7.
Saduman Sen  Ugur Sen 《Vacuum》2005,77(2):195-202
The growth kinetics of boride layer on boronized AISI 4140 steel is reported. Steel samples were boronized in molten borax, boric acid and ferro-silicon bath at 1123, 1173 and 1223 K for 2, 4, 6 and 8 h, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed by means of optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD). The boride layer thickness ranged from 38.4 to 225 μm. Iso-thickness diagrams for pre-determined thickness according to treatment time and temperature, were graphed by MATLAB 6.0 software. The hardness of borides formed on the samples changed between 1446 and 1739 HV0.1, according to treatment time and temperature. Layer growth kinetics way analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as a function of treatment time and temperature in the range of 1123-1223 K. For practical use, an iso hardness diagram was established as a function of treatment time, temperature and boride layer thickness. The depth of the tips of the most deeply penetrated FeB and Fe2B needles were taken as measures for diffusion in the growth directions. The kinetics of the reaction, were also determined by varying the treatment temperature and time. The results show that K increased with boronizing temperature. The activation energy (Q) was formed to be 215 kJ mol−1. The growth rate constant (K) ranged from 3×10−9 to 2×10−8 cm2s−1.  相似文献   

8.
The results of study on the boro-carburizing and boronizing of AISI 1015 steel on tensile strength was carried out by Taquchi-grey relational method. The orthogonal array L9(34) was used to conduct the experiment. The thickness of boride layer increased with increase in process temperature and time. The thickness of boride layers for boronized AISI 1015 steel was more than the pre-carburized and boronized AISI 1015 steel. The microhardness decreased with increase in distance from the surface to the core. However, the hardness gradient reduced gradually from the surface to the core in case of boro-carburized treatments compared to boronized treatments. The optimal process parameters and their levels for pre-carburized AISI 1015 steel are carbon content 0.45% at 950 °C temperature and 4 h process duration. The results revealed that process time, case carbon content and process temperature influenced the yield strength and % elongation. The ultimate strength is influenced by the process temperature, process time and carbon content. The process temperature was the most influential control factor that affects the tensile strength properties.  相似文献   

9.
《Vacuum》2012,86(4):391-397
The present study reports on kinetics of borided AISI M2 high speed steel. Boronizing thermochemical treatment was carried out in a solid medium consisting of EKabor powders at 850 °C, 900 °C and 950 °C for 2, 4, 6 and 8 h, respectively. The presence of borides FeB and Fe2B of steel substrate was confirmed by optical microscopy and scanning electron microscopy (SEM). The results of this study indicated that the morphology of the boride layer has a smooth and compact morphology, and its hardness was found to be in the range of 1600–1900 HV. Depending on process time and temperature the thickness of boride layer measured by a digital instrument attached to an optical microscope ranged from 3 to 141 μm. Layer-growth kinetics were analyzed by measuring the extent of penetration of the FeB and Fe2B sublayers as a function of boronizing time and temperature. The fracture toughness of borides ranged from 4.80 to 5.21 MPa m1/2. Moreover, an attempt was made to investigate the possibility of predicting the iso-thickness of boride layer variation and to establish an empirical relationship between process parameters and boride layer thickness.  相似文献   

10.
D2 is an air-hardening tool steel and due to its high chromium content provides very good protection against wear and oxidation, especially at elevated temperatures. Boriding of D2 steel can further enhance its surface mechanical and tribological properties. Unfortunately, it has been very difficult to achieve a very dense and uniformly thick boride layers on D2 steel using traditional boriding processes. In an attempt to overcome such a deficiency, we explored the suitability and potential usefulness of electrochemical boriding for achieving thick and hard boride layers on this tool steel in a molten borax electrolyte at 850, 900, 950 and 1000 °C for durations ranging from 15 min to 1 h. The microstructural characterization and phase analysis of the resultant boride layers were performed using optical, scanning electron microscopy and X-ray diffraction methods. Our studies have confirmed that a single phase Fe2B layer or a composite layer consisting of FeB + Fe2B is feasible on the surface of D2 steel depending on the length of boriding time. The boride layers formed after shorter durations (i.e., 15 min) mainly consisted of Fe2B phase and was about 30 μm thick. The thickness of the layer formed in 60 min was about 60 μm and composed mainly of FeB and Fe2B. The cross sectional micro-hardness values of the boride layers varied between 14 and 22 GPa, depending on the phase composition.  相似文献   

11.
I. Ozbek  C. Bindal 《Vacuum》2011,86(4):391
The present study reports on kinetics of borided AISI M2 high speed steel. Boronizing thermochemical treatment was carried out in a solid medium consisting of EKabor powders at 850 °C, 900 °C and 950 °C for 2, 4, 6 and 8 h, respectively. The presence of borides FeB and Fe2B of steel substrate was confirmed by optical microscopy and scanning electron microscopy (SEM). The results of this study indicated that the morphology of the boride layer has a smooth and compact morphology, and its hardness was found to be in the range of 1600–1900 HV. Depending on process time and temperature the thickness of boride layer measured by a digital instrument attached to an optical microscope ranged from 3 to 141 μm. Layer-growth kinetics were analyzed by measuring the extent of penetration of the FeB and Fe2B sublayers as a function of boronizing time and temperature. The fracture toughness of borides ranged from 4.80 to 5.21 MPa m1/2. Moreover, an attempt was made to investigate the possibility of predicting the iso-thickness of boride layer variation and to establish an empirical relationship between process parameters and boride layer thickness.  相似文献   

12.
In the present study, AISI 8620 steel was plasma paste borided by using various B2O3 paste mixture. The plasma paste boriding process was carried out in a dc plasma system at temperatures of 973, 1023 and 1073 K for 2, 5 and 7 h in a gas mixture of 70% H2 -30% Ar under a constant pressure of 10 mbar. The properties of the boride layer were evaluated by optical microscopy, X-ray diffraction, Vickers micro-hardness tester and the growth kinetics of the boride layers. X-ray diffraction analysis of boride layers on the surface of the steel revealed FeB and Fe2B phases. Depending on temperature and layer thickness, the activation energies of boron in steel were found to be 124.7 kJ/mol for 100% B2O3.  相似文献   

13.
《Materials Letters》2005,59(14-15):1719-1722
In this work, AISI H13 and D2 tool steels were treated in molten borax, containing dissolved ferro-niobium, ferro-titanium and aluminum, at 1020 °C for 4 h. Samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) and Vickers microhardness. Well defined layers were obtained with excellent thickness regularity. For the AISI H13 steel the layer measured 9 μm and for the AISI D2 steel the layer thickness was 18 μm. Their microhardness values were at about 2600 HV0.050. The layers consisted of niobium carbide according to XRD analysis. EDS results showed the predominance of niobium and absence of iron in the layers on both steels. The presence of titanium was detected, just in small amounts, in the region of the layer next to substrate.  相似文献   

14.
Abstract

In the present paper, the effects of rare earth (RE) additions to the solid state boriding of titanium alloy TC21 have been studied. The microstructural evolution and phase transformations of the borided layers were examined using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction. Moreover, the microhardness for the borided layer was also determined by Vickers hardness test. The results showed that the addition of a small amount of RE elements in the boriding process can lead to an increased boron concentration in the surface layer coupled with the improved surface hardness and coating layer thickness. Furthermore, the presence of trace quantities of RE oxide (Ce2O3) in boride layers indicated that the RE elements as catalysts could not only influence but also accelerate boriding process.  相似文献   

15.
Saduman Sen  Ugur Sen  Cuma Bindal   《Materials Letters》2006,60(29-30):3481-3486
In this study, we investigated the wear behaviour of borided and borided + short-duration oxidized AISI 4140 steel. Boronizing was carried out in a slurry salt bath consisting of borax, boric acid and ferro silicon. Also, short-duration oxidizing treatment was applied to borided steel to produce glass-like boron oxide layer. The short-duration oxidizing was performed at 750 °C for 3 min. Optical and scanning electron microscope (SEM) cross-sectional examinations of borided layer revealed a needle-shaped morphology. The presence of non-oxide boride type ceramics FeB and Fe2B formed on the surface of steel substrate was confirmed by classical metallographic technique and X-ray diffraction (XRD) analysis. The hardness of borides formed on the surface of steel substrate and unborided steel substrate were 1446–1690 HV0.1 and 280 HV0.1, respectively. The wear behaviour of borided steel were characterised by using a pin-on-disc technique. The borided and short-duration oxidized steels, in the form of pins were allowed to slide against a hard AISI 440C stainless steel disc (63 HRc). The sliding velocity of 1 m s− 1 for borided and short-duration oxidized steel and the nominal load on the pin was 20 N. The highest wear rates were observed on disc slide against the base steel, whilst the lowest wear rates occurred during sliding against the borided and short-duration oxidized steel surfaces. It was observed that the friction coefficient of unborided (hardened + tempered) and borided steels ranged from 0.50 to 0.60, but after short-duration oxidizing, the friction coefficient of borided steel was dropped to 0.12.  相似文献   

16.
In this study, niobium boride coating was applied on pre-boronized AISI M2 steel by the thermo-reactive deposition technique in a powder mixture consisting of ferro-niobium, ammonium chloride and alumina at 950 °C for 1-4 h. The coated samples were characterized by X-ray diffraction, scanning electron microscope and micro-hardness tests. Niobium boride layer formed on the pre-boronized AISI M2 steel was smooth, compact and homogeneous. X-ray studies showed that the phases formed on the steel surfaces are NbB, Nb3B2, FeB and Fe2B. The depth of the niobium boride layer ranged from 0.97 μm to 3.25 μm, depending on treatment time. The higher the treatment time the thicker the niobium boride layer observed. The hardness of the niobium boride layer was 2738 ± 353 HV0.01.  相似文献   

17.
Q235钢固体粉末渗硼及渗层生长动力学行为   总被引:2,自引:0,他引:2  
各类材料渗硼工艺不同,硼的扩散也不同,其中有许多现象往往不能定量分析.采用固体粉末法对Q235钢进行了渗硼,得到的渗硼层为锯齿状,垂直于钢表面楔入基体.用sigma Plot 10.0软件对试验数据进行了分析和拟合,得出了渗硼层等厚度图,为制定渗硼工艺提供了依据:利用此图,既可以对设定的渗硼时间和温度预测渗硼层厚度,又可以用一定的固体渗硼厚度值确定渗硼时间和温度.通过动力学研究得到了渗层相组成为单一的Fe2B相硼,在不同温度下的扩散速率常数:K800℃=1.074×10-13m2/s,K850℃=1.622×10-13m2/s,K900℃=3.921×10-13m2/s,平均扩散激活能为134.473 kJ/mol.  相似文献   

18.
The structure and chemical composition of composite and multicomponent borided layers obtained by a new method that combines the chemical electroless and plasma boriding techniques are described. Quantitative X-ray microanalysis examinations show that on the surface of nickel–phosphorus coated steel borided at 923 K three boride phases of the type (Ni x Fe1 – x )4B3, (Ni x Fe1 – x )2B and (Fe x Ni1 – x )B formed, whereas in the samples borided at 1123 K only two borides (Fe1 – x Ni x )B and (Fe1 – x Ni x )2B are present. The shape and the distribution of the phases depends on the thickness of the Ni–P layer deposited on the steel substrate before boriding. The thicknesses of boride zones obtained on nickel coated steels are much greater than those obtained on the same steel without nickel coating. Also the diffusion zone between the Ni–P layer and the steel increases during boriding, which improves the adhesion of the layer to the substrate. The composite layers obtained show a high wear resistance, with their resistance to corrosion being markedly greater than that of uncoated and only borided steel.  相似文献   

19.
Ugur Sen 《Vacuum》2004,75(4):339-345
In this study, the growth kinetics of titanium nitride layer deposited on pre-nitrided AISI 1020 steel samples by thermo-reactive diffusion (TRD) techniques in a solid medium was reported. Steel was at first tufftrided and then titanium nitride coating treatment was performed in a powder mixture consisting of ferro-titanium, ammonium chloride and alumina at 1173, 1223 and 1273 K for 1-4 h. Titanium nitride layer thickness on the titanium nitride coated AISI 1020 steel ranged from 5.5 to 19.2 μm depending on treatment time and temperature. Layer growth kinetics was analyzed by measuring the depth of titanium nitride layer as a function of time and temperature. The kinetics equation of the reaction has also been determined with Arhenius equation K=Koexp(−Q/(RT). The result showed that the diffusion coefficient (K) of the process increased with treatment temperature. Activation energy (Q) for TRD process was calculated as 187.09 kJ/mol. The diffusion coefficients (K) changed between 6.637×10−11 and 2.097×10−10 cm2/s depending on the process temperature.  相似文献   

20.
IBRAHIM GUNES 《Sadhana》2013,38(3):527-541
In this study, the case properties and diffusion kinetics of GS18NiMoCr36 (GS18), GS22NiMoCr56 (GS22) and GS32NiCrMo6.4 (GS32) gear steels borided in Ekabor-II powder were investigated by conducting a series of experiments at temperatures of 1123, 1173 and 1223 K for 2, 4 and 6 h. The boride layer was characterized by optical microscopy, X-ray diffraction technique and micro-Vickers hardness tester. X-ray diffraction analysis of boride layers on the surface of the steels revealed the existence of FeB, Fe2B, CrB and Cr2B compounds. The thickness of the boride layer increases by increasing boriding time and temperature for all steels. The hardness of the boride compounds formed on the surface of the steels GS18, GS22 and GS32 ranged from 1624 to 1905 HV0,05, 1702 to 1948 HV0,05, and 1745 to 2034 HV0,05 respectively, whereas Vickers hardness values of the untreated steels GS18, GS22 and GS32 were 335 HV0,05, 358 HV0,05 and 411 HV0,05, respectively. The activation energies (Q) of borided steels were 228.644 kJ/mol for GS18, 280.609 kJ/mol for GS22 and 294.359 kJ/mol for GS32. The growth kinetics of the boride layers forming on the GS18, GS22 and GS32 steels and the thickness of boride layers were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号