首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Near-dry electric discharge machining (EDM) is an eco-friendly process. It does not produce toxic fumes and consequent health hazards. The near-dry EDM generally utilizes a mixture of two phase (liquid and air) dielectric for machining. This investigation reports the influence of four processing parameters, viz. current, flushing pressure, duty factor, and lift on three responses. The responses measured were material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The work material chosen was high speed steel (HSS). Mathematical models have been proposed herein for evaluation of the effect of processing parameters in near-dry EDM. These models were developed using response surface methodology (RSM). The experimental results reveal that the process parameters taken into consideration were significant for MRR. The TWR was negligible in near-dry EDM. This process gives a finer surface finish with thinner recast layer even at higher discharge energies as compared to conventional EDM.  相似文献   

2.
In the present work, a parametric study of EDM process using Argon-Gas-Assisted EDM (AGAEDM) with rotary tool during machining of high chromium high carbon diesteel has been performed. The pulse on time, tool rotation, discharge current, duty cycle, and gas pressure were selected as process factors. The effects of process factors were investigated on responses viz. surface roughness (SR), material removal rate (MRR), and electrode wear ratio (EWR). A comparison between solid tool, air-assisted tool, and argon-assisted tool has also been presented. It was found that EWR and SR were less during AGAEDM process as compared to rotary EDM(REDM) with solid tool and air-assisted EDM (AAEDM) with rotary tool under same process parameters. However, MRR was found to be higher in AAEDM process. The regression analysis and analysis of variance have been done to develop and find the adequacy of the developed models of MRR, EWR, and SR. It was observed that surface integrity of workpiece machined by AGAEDM was better than workpiece machined by AAEDM and conventional REDM process.  相似文献   

3.
The present paper reports on a recently developed rotary tool micro-ultrasonic drilling (RT-MUSD) process. The RT-MUSD process was utilized for machining of micro-holes in zirconia, silicon and glasswork materials. The effects of work material properties on the performance characteristics (material removal rate (MRR), depth of hole and hole overcut) of RT-MUSD process were investigated by varying the power rating, rotation speed, abrasive size and slurry concentration. Additionally, machined micro-holes and tool surface were analyzed considering microscopic images. The experimental results revealed that the MRR and depth of hole increased by increasing the power rating. An increase in rotation speed up to 300 rpm, abrasive size up to #1200 mesh and concentration up to 20% increased the MRR, depth of hole and decreased hole overcut. The maximum machining rate and hole overcut were observed during machining of silicon followed by glass and zirconia. The fracture toughness and hardness of the work material affected the MRR and tool wear, respectively. Pure brittle fracture mode of material removal was observed in all the work materials during RT-MUSD process. Eventually, the RT-MUSD process was optimized using desirability approach and a micro-hole of depth 4355 µm was achieved using optimal parameter settings.  相似文献   

4.
This paper investigates the highly nonlinear relationship between process parameters and machining responses, including material removal rate (MRR), surface roughness (SR), and electrode wear rate (EWR) of electric discharge machining (EDM) using Kriging model. Subsequently, an emerging multi-objective optimization algorithm called particle swarm is used to determine the best machining conditions that not only maximize the machining speed but also minimize the EWR with a constraint of the SR. The experiment was carried out with P20 steel on a CNC EDM machine using copper electrode. The research result shows that the MRR increases sharply when increasing the discharge current just like other researches pointed out. However, the relationship between EWR and current is complicated. EWR appears the minimum value when the current is around 30?A. The speed of change of MRR per unit of EWR is the highest when the SR is around 14.5?µm. The combination of Kriging regression model and particle swarm optimization is considered as an intelligent process modeling and optimization of EDM machining. The proper selection of process parameters helps the EDM operator to reduce the machining time and cost.  相似文献   

5.
Electric discharge machining (EDM) is an acclaimed non-conventional machining process that is used for machining of hard or geometrically complex and electrically conductive materials which are extremely difficult to machine by conventional methods. One of the foremost demerits of this process is its very low material removal rate (MRR). For this, researchers have proposed some modifications like; providing rotational motion to the tool or workpiece, mixing of conducting fine powders (such as SiC, Cr, Al, graphite etc.) in the dielectric, providing vibrations to either the tool or the workpiece etc.

The present research examines how the MRR and tool wear rates (TWR) vary with the variation in the tool rotation speed and their effects on the surface integrity of the workpiece. The results obtained clearly indicate that the tool rotation significantly improves the average MRR up to 49%. Moreover, the average surface finish also gets improved by around 9–10% while using the rotational tool EDM. Due to the tool rotation, the recast layer thickness is less for the rotary EDM as compared with the stationary tool EDM process. Furthermore, the micro-cracking on the recast surface of the workpiece is also less for the rotary tool EDM as compared with the stationary tool EDM.  相似文献   


6.
The present research paper is based on a comparative study of stationary tool micro-ultrasonic machining (STMUSM) and rotary tool micro-ultrasonic machining (RTMUSM). Microchannels were developed on glass work material by using both processes. The effect of tool rotation on the performance of micro-USM was investigated. The performance of both processes was compared on the basis of material removal rate (MRR) and depth of channel (DOC) as response characteristics. The power rating, work feed rate, concentration of abrasive slurry, and abrasive mesh size were chosen as variable input process parameters in this investigation. The form accuracy of the fabricated microchannels was analyzed with the help of imaging technique. Also, a qualitative analysis of tool wear was carried out with the help of microscopic images. The experimental results revealed that the tool rotation significantly improved the performance of micro-USM. The RTMUSM resulted in 155% and 147% higher MRR and DOC as compared to STMUSM. The tool wear was also found to be lesser in RTMUSM as compared to STMUSM and as a result of that form accuracy of machined microchannels improved.  相似文献   

7.
The Electrical Discharge Machining (EDM) technique was performed under the magnetic field influence to determine the material removal mechanism as well as surface roughness (SR) of nonmagnetic material. This study presents an exploration of the hybrid EDM technique assisted by magnetic field, with an aim to improve process performance. Herein, magnetic field intensity, peak current, duration of pulse-on/off, tool electrode material, and SiC percentage distribution were opted as the machining parameters. The chosen parameters were analyzed for their effects on the material removal rate (MRR) and SR while machining of SiC-reinforced aluminum-based metal matrix composites. Taguchi methodology was adopted for optimization of process parameters to achieve better MRR and lower SR. The experimental results witnessed improved surface finish and enhanced material removal ability of the process and also inferred that the magnetic field-assisted EDM facilitated the process stability.  相似文献   

8.
In the present work, aluminum alloy 6061/10%SiC composite is machined using numerical controlled Z-axis (ZNC) electrical discharge machining (EDM) process. Improvement in material removal rate (MRR) is explored using tungsten powder suspended dielectric fluid in EDM process (powder-mixed electrical discharge machining (PMEDM)). Peak current, pulse on time, pulse off time, and gap voltage are studied as process parameters. Mathematical relation between process parameters and MRR is established on basis of response surface methodology. The results obtained are further compared with MRR achieved from machining using simple EDM. The existence of tungsten particles in kerosene resulted in 48.43% improvement in MRR. The influence of tungsten powder-mixed dielectric fluid on machined surface is analyzed using scanning electron microscope and energy dispersive spectroscopy (EDS). The results revealed improvement in surface finish and reduction in recast layer thickness with PMEDM. EDS analysis reported presence of tungsten and carbon in recast layer deposited on machined surface.  相似文献   

9.
The demand for miniaturized products having a glossy surface or nano-level surface is increasing exponentially in automobile, aerospace, biomedical, and semiconductor industries. The mirror-like surface finish has generated a need to develop advanced machining processes. The addition of powder particle into electric discharge machining (EDM) oil is considered a promising technique to achieve surface integrity at the miniaturization level. In this research, the Al–10%SiCp metal matrix composite (MMC) has been machined after mixing the appropriate amount of multiwalled carbon nanotubes (MWCNTs) into the EDM dielectric fluid. An advanced experimental setup has been designed and fabricated in the laboratory for conducting the experiments. This proposed technology is called nano powder mixed electric discharge machining (NPMEDM). The input parameters of NPMEDM are also optimized using central composite rotatable design (CCRD) based on response surface methodology (RSM) in order to obtain the best surface finish and material removal rate (MRR). The MRR has been increased by 38.22% and surface finish has been improved by 46.06% after mixing the MWCNTs into the EDM dielectric fluid. The results indicate that the combination of parameters A5, B5, C5, and D5 might have produced maximum MRR, whereas A1, B1, C1, and D3 have produced minimum surface roughness (SR).  相似文献   

10.
The performance of cryogenically assisted electric discharge machining (CEDM) process has been evaluated in the presented research paper. The machining of cryogenically treated (CT) and cryogenically untreated (CUT) AISI D2 tool steel work specimens using cryogenically cooled (CC), CT, and CUT copper electrodes have been performed. The effects of various parameters, namely, workpiece condition, tool condition, nozzle flushing, peak current, duty cycle, pulse duration, and gap voltage, have been studied on the performance indicators, viz. the material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The best parametric combinations have been suggested to obtain the desired quality characteristics. The interaction effects among various parameters have also been presented. An increase of approximately 18% in MRR and a reduction of 26% and 11% in TWR and SR, respectively, were observed, during the machining through CEDM in contrast to EDM. The confirmatory experiments suggested that experimental values were in permissible agreement with the predicted values for all the performance measures. Finally, the comparison of the CEDM with that of EDM process, in the light of SEM graphs, has been presented.  相似文献   

11.
Abstract

Powder mixed electric discharge machining (PMEDM) is a further advancement of conventional EDM process in which electrically conductive powder is suspended in the dielectric fluid to enhance the material removal rate (MRR) along with the surface quality. Cryotreatment is introduced in this process for improving the cutting tool properties as well as tool life. In this investigation, EDM is performed for the machining of AISI 304 stainless steel using cryotreated double tempered tungsten carbide electrode when SiC powder is suspended in the kerosene dielectric. The influence of process parameters viz. pulse on time, peak current, duty cycle, gap voltage and powder concentration on tool wear rate (TWR), surface roughness (Ra), and MRR has been studied. Metallographic analysis was carried out for the machined surfaces. By the addition of powder concentration and cryotreated double tempered electrode, significant improvement in the machining efficiency has been found out. When cryotreated electrode used MRR, TWR and Ra decreased by 12%, 24% and 13.3%, respectively and when SiC powder used MRR increased by 23.2%, TWR and Ra decreased by about 25% and 14.2%, respectively.  相似文献   

12.
In this experimental study, the surface quality of AISI stainless steel 316L was improved to a nano-level surface finish by means of magneto rheological abrasive flow finishing process. In order to determine the effect of input process parameters toward the responses such as final surface roughness (SR) and material removal rate (MRR), response surface model was built up and optimal parameters were found using the desirability analysis. Based on the experimental design, 20 experiments were conducted and the minimum SR and maximum MRR obtained are 53.46?nm and 1.757?mg/s, respectively, and their optimized values are 53.10?nm and 1.817?mg/s. By using the regression equations obtained for SR and MRR as input, an evolutionary optimization algorithm called as firefly algorithm has been utilized where the required surface finish was constrained as ≤60?nm and the optimized results were confirmed by means of validation experiments. The obtained results depict that the voltage to the electromagnet plays a most significant role to produce minimum SR and maximum MRR. Moderate and least significant contributions are given by the hydraulic pressure and number of cycles, respectively, toward the responses.  相似文献   

13.
Machining of ceramic materials has been a major challenge owing to high hardness and brittleness. The reinforcement of a conducting filler allows permissible machining in electrical discharge machining (EDM) process. The current effort analyses the impact of multi-walled carbon nanotubes (MWCNT) of concentrations of 2.5 and 5 vol. %, as conducting filler towards machinability of alumina composites in µ-EDM process. The influence of tool materials and its rotation are closely analyzed. A successful machining process is observed in both the two composites, with a higher material removal rate (MRR) in 5 vol. % MWCNTs. When the tool starts to rotate at 750 rpm, an increment of around 60–65% is observed in MRR for both the two composites. Similarly, the surface roughness (Ra) decreases by a factor of 20?25%. The brass tool is observed to yield better machining capabilities due to the frequent initiation of sparks. A highly porous machined surface is observed in both the two composites. This scenario depicts the spalling effect as more dominant than melting-evaporation effect. The extent of porous recast layer on the drilled edges is found to reduce with increasing the speed of tool rotation.  相似文献   

14.
The present study reports the outcome of experiments conducted to investigate the effect of parameters on improvement in the material removal rate (MRR), reduction in the tool wear rate (TWR), and overcut size for commonly used die steels. To overcome some of the shortcomings of electric discharge machining (EDM), an approach of powder mixing in dielectric fluids is adopted to investigate the influence of process parameters. The addition of powders in dielectric improves MRR and lowers TWR significantly. Powder concentration, current, and pulse-on time are three significant factors affecting MRR, TWR, and overcut size. An increase in powder concentration improves the process performance, but is limited by the possibility of arcing at higher concentration. Use of the powder resulted in increased effective spark length causing larger overcut. The problem is acute in trials conducted at high pulse-on duration with high powder concentration that leads to a ragged surface at cut edges. Furthermore, electrode tools with smaller tip included angle resulted in larger profile deviation at the machined surface as compared to trials conducted using tools with higher included angle. Surface morphological changes, grain size, microstrain, and material migration were investigated using SEM, XRD, and EDS analysis and a significant improvement in properties of the machined surface was observed.  相似文献   

15.
This paper presents a novel hybrid machining process (HMP) called abrasive mixed electro discharge diamond grinding (AMEDDG) in which abrasive powder is mixed in dielectric fluid to perform electro discharge diamond grinding (EDDG) action on a workpiece. In-house-fabricated AMEDDG setup was used to experimentally evaluate the performance of the process during the machining of Nimonic 80A. The effects of wheel speed, powder concentration, current, and pulse-on-time (POT) were investigated on the material removal rate (MRR). The surface morphological properties of the machined workpiece were investigated based on some quality surface indicators. The experimental results show that MRR of the workpiece was influenced by wheel speed, current, and powder concentration, and optimum MRR can be achieved at a wheel speed of 1400 RPM, a powder concentration of 4 g/L, a current of 10 A, and a POT of 26 µs.  相似文献   

16.
In the present research work, an extensive experimental study of air-assisted rotary electrical discharge machining (AAEDM) of high chromium, high carbon die steel has been made. Investigations have been performed to study the process factor effect namely pulse-on time, discharge current, duty cycle, tool rotation, and air pressure on material removal rate (MRR) and electrode wear ratio (EWR). A comparative analysis of solid rotary tool electrode electrical discharge machining (REDM) and AAEDM has been presented. It was found that a high MRR and low EWR occurred in AAEDM as compared to the REDM process, under the same processing conditions. Use of a multi-hole tool provided better circulation of dielectric in the discharge gap, thus it improved the flushing efficiency of the process. The results showed that the application of compressed air has a favorable influence on MRR and EWR.  相似文献   

17.
In conventional ultrasonic machining (USM), brittle materials are machined by using ultrasonic impacts on the workpiece, through a medium of abrasive slurry. In this paper a new cutting process that resulted due to introduction of an additional parameter, namely the rotation of the workpiece during the machining, is presented. This may be called ‘rotary ultrasonic machining’. The material removal rates (MRR) in rotary USM are up to four times those in conventional USM. The MRR increases with increase in speed of rotation of workpiece. An explanation for the superior performance of rotary USM is presented. The performance of rotary USM as a function of static load, abrasive grain size, concentration of abrasive slurry, diameter of tool and ratio of diameters of hollow tools, is studied and the parameters are optimized for minimum machining time or maximum material removal rate. Comparisons are made with conventional USM.  相似文献   

18.
The main objective of this study is to investigate the effects of various electrode materials and their influences on electrical discharge micro-machining performance attributes. The performance attributes are determined in terms of tool wear rate (TWR), material removal rate (MRR), taper angle, overcut, and surface roughness by drilling micro-holes on SS 316?L material. It is noticed that, for high discharge energy the MRR, TWR, taper angle, and overcut are more and also when the thermal conductivity, boiling point, and melting point of the electrode material are high, the TWR is low. The surface finish is good at low discharge energy and low spindle speed. If the tool electrode is rotating at minimum speed during machining, a centrifugal effect is created on the dielectric so that debris at the inter-electrode gap is evacuated efficiently. If the tool is stationary, then the machining conditions are unstable due to improper flushing of debris.  相似文献   

19.
In this research, an attempt was made to investigate the influence of copper tool vibration with ultrasonic frequency on output parameters in the electrical discharge machining of Ti–6Al–4V. The selected input parameters for the experiment comprise of ultrasonic vibrations of tool, current and pulse duration and the outputs are tool wear ratio (TWR), material removal rate (MRR), and stability of machining process and surface integrity of a workpiece, including surface roughness, thickness of recast layer, and formation of micro cracks. Scanning electron microscope and X-Ray diffraction were employed to examine the surface integrity of the workpiece. The results revealed that tool vibration with ultrasonic frequency enhances MRR via increasing normal discharges and decreasing arc discharges and open circuit pulses. Also, by using ultrasonic vibrations in finishing regimes, the density of cracks and TWR decrease while in roughing regimes, the thickness of recast layer, density of cracks, and TWR increase.  相似文献   

20.
Microelectric discharge milling is one of the variants of microelectric discharge machining process which acquire the attention of researchers due to its unique ability to produce microchannels and three-dimensional structures in difficult-to-machine materials like titanium. In the present work, an experimental investigation has been performed in order to study the effect of SiC microparticle suspended dielectric on machining Ti-6Al-4V with tungsten carbide electrode. The effects of major electric discharge milling process parameters—voltage, capacitance, and powder concentration in dielectric—on responses—viz., material removal rate (MRR) and tool wear rate (TWR)—were studied. Experiments were designed and performed based on response surface methodology (RSM)-Box–Behnken statistical design and the significance of in put parameters were identified with the help of analysis of variance. From the results, it is recommended to use powder concentration of 5 g/L, capacitance of 0.1 µF, and voltage of 115 V for achieving high material removal and low tool wear rate. Finally, the studies were conducted to analyze the surface modification and the quality of machined surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号