首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Pulsed laser deposition (PLD) has been used to deposit hydroxyapatite (HA) ceramic over titanium substrate with an interlayer of titania. PLD has been identified as a potential candidate for bioceramic coatings over metallic substrates to be used as orthopedic and dental implants because of better process control and preservation of phase identity of the coating component. However, direct deposition of hydroxyapatite on titanium at elevated temperature results in the formation of natural oxide layer along with some perovskites like calcium titanate at the interface. This leads to easy debonding of ceramic layer from the metal and thereby affecting the adhesion strength. In the present study, adherent and stable HA coating over Ti6Al4V was achieved with the help of an interlayer of titania. The interlayer was made to a submicron level and HA was deposited consecutively to a thickness of around one micron by exposing to laser ablation at a substrate temperature of 400°C. The deposited phase was identified to be phase pure HA by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and inductively coupled plasma spectrometry. The mechanical behavior of coating evaluated by scratch test indicates that the adhesion strength of HA coating was improved with the presence of titania interlayer.  相似文献   

2.
We studied the effect of nano-tubular anodic TiO2 buffer layers on hydroxyapatite (HA) coating. The pulsed laser deposition (PLD) method was used to deposit HA on a well arranged nano-tubular anodic TiO2 (NT-ATO) buffer layer prepared by an electrochemical anodization technique. The surface morphology and chemical composition of HA coatings were characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and contact angle measurement. We found that crystalline HA coatings show well arranged porous morphologies with a favorable surface wettability. We also found that an anodic nano-tubular TiO2 buffer layer with a relatively short tube length shows a better coating morphology. The deposition process of HA on the nanotubular TiO2 buffer layer was also proposed.  相似文献   

3.
Solubility is one of the most important properties in the field of biomaterial. The present paper evaluated the dissolution behavior of simultaneous vapor deposited calcium phosphate coatings in vitro. The coatings were immersed in calcium-free Hank's solution at different periods of time. Characterization of the coatings was performed using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and Rutherford backscattering spectroscopy, prior to and after immersion. Amorphous coatings showed complete dissolution. Crystalline coatings showed that alpha tricalcium phosphate (α-TCP) phase dissolved steadily throughout the testing time leaving the stable hydroxyapatite phase undegraded. The increased in calcium and phosphate ions due to dissolution of α-TCP provided the means for reprecipitation of apatite on the coating, which became apparent after 7 days of immersion.  相似文献   

4.
离子束技术沉积羟基磷灰石薄膜的结构及溶解性能   总被引:6,自引:1,他引:5  
分别采用离子束溅射和离子束增强沉积技术,以烧结羟基磷灰石(HA)陶瓷为靶材,在纯钛金属基片表面沉积HA薄膜.X光电子能谱分析表明:薄膜中Ca、P、O元素的化学态与所用HA陶瓷靶材相接近;相比HA靶材,薄膜表面存在CO32-.X射线衍射分析表明:沉积薄膜均为非晶态结构,经650℃退火处理转变为结晶磷灰石.在模拟体液中的溶解实验揭示:薄膜仅与溶液中Ca、P和O存在离子交换;薄膜易降解,浸泡10天,样品经历了降解、再沉积过程;相比离子束溅射沉积膜,离子束增强沉积膜具有加速沉积Ca、P的能力.  相似文献   

5.
In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.  相似文献   

6.
Calcium phosphate (CaP) ceramics, especially hydroxyapatite (HA), have received much attention and have been clinically applied in orthopaedics and dentistry due to their excellent biocompatibility. Among several methods for preparing HA coating, electrochemical deposition is a relatively new and possible process. However, documented electrochemical processes were conducted at elevated temperature. In this study, uniform HA coatings have been directly deposited on titanium at room temperature. X-ray diffractometry (XRD) results demonstrated that dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) was the main component of the coating deposited at lower current densities (1 and 5 mA/cm2). HA structure was obtained at current density above 10 mA/cm2 and remained stable after heat treatment at 100–600 °C for 1 h. Part of HA phase was transformed into β-TCP and became a biphasic calcium phosphate coating after annealing at 700 °C. Scratch tests showed that HA coating was not scraped off until a shear stress of 106.3 MPa. Coatings deposited at room temperature exhibited stronger adhesion than those at elevated temperature. HA coating revealed a dense inner layer and rough surface morphology which could fulfill the requisition of implant materials and be adequate to the attachment of bone tissue.  相似文献   

7.
Carbon nanotubes–hydroxyapatite (CNTs–HA) composites were synthesized, using an in situ chemical method and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). HA particles were uniformly absorbed on the CNTs, with strong interfacial bonding. The CNTs–HA composites behaved like single composites when deposited on a titanium substrate by electrophoretic deposition (EPD). EPD was carried out at 10, 20 and 40 V, for 0.5 to 8 min at each voltage. Coating efficiency and weight increased with increasing deposition time, while the slope of the curves decreased, indicating a decrease in deposition rate. The CNTs–HA coating morphology was analyzed with scanning electron microscopy (SEM). The results revealed that decreasing the voltage used for deposition coatings could reduce cracking frequency. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies showed that the deposition coatings protected the titanium substrate from corroding in simulated body fluid (SBF). In addition, in vitro cellular responses to the CNTs–HA coatings were assessed to investigate the proliferation and morphology of osteoblast cell line.  相似文献   

8.
This work evaluates the thermal reactivity and the biological reactivity of an amorphous calcium phosphate thin film produced by radio frequency (RF) magnetron sputtering onto titanium substrates. The analyses showed that the sputtering conditions used in this work led to the deposition of an amorphous calcium phosphate. The thermal treatment of this amorphous coating in the presence of H2O and CO2 promoted the formation of a carbonated HA crystalline coating with the entrance of CO32 ? ions into the hydroxyl HA lattice. When immersed in culture medium, the amorphous and carbonated coatings exhibited a remarkable instability. The presence of proteins increased the dissolution process, which was confirmed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses. Moreover, the carbonated HA coating induced precipitation independently of the presence of proteins under dynamic conditions. Despite this surface instability, this reactive calcium phosphate significantly improved the cellular behavior. The cell proliferation was higher on the Ticp than on the calcium phosphate coatings, but the two coatings increased cellular spreading and stress fiber formation. In this sense, the presence of reactive calcium phosphate coatings can stimulate cellular behavior.  相似文献   

9.
Thin films of Si-substituted hydroxyapatite (Si-HA) were deposited on Si and Ti substrates by pulsed laser deposition (PLD), in the presence of a water vapour atmosphere. The PLD ablation targets were made with different mixtures of commercial carbonated HA and Si powder, in order to produce the Si-HA thin films. The physicochemical properties of the coatings and the incorporation of the Si into the HA structure was studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Si atoms were successfully incorporated into the HA structure, and were found to be in the form of SiO44− groups, principally displacing carbonate groups off the HA structure.  相似文献   

10.
T. Kubart  J. Jensen  L. Liljeholm  S. Berg 《Vacuum》2009,83(10):1295-1298
Titanium dioxide thin films have many interesting properties and are used in various applications. High refractive index of titania makes it attractive for the glass coating industry, where it is used in low-emissivity and antireflective coatings. Magnetron sputtering is the most common deposition technique for large area coatings and a high deposition rate is therefore of obvious interest. It has been shown previously that high rate can be achieved using substoichiometric targets. This work deals with reactive magnetron sputtering of titanium oxide films from TiOx targets with different oxygen contents.The deposition rate and hysteresis behaviour are disclosed. Films were prepared at various oxygen flows and all films were deposited onto glass and silicon substrates with no external heating. The elemental compositions and structures of deposited films were evaluated by means of X-ray photoelectron spectroscopy, elastic recoil detection analysis and X-ray diffraction. All deposited films were X-ray amorphous. No significant effect of the target composition on the optical properties of coatings was observed. However, the residual atmosphere is shown to contribute to the oxidation of growing films.  相似文献   

11.
H.C. Man  K.Y. Chiu  K.H. Wong 《Thin solid films》2009,517(18):5496-2056
Hydroxyapatite (HA) coatings were fabricated by pulsed laser deposition (PLD) on commercially pure titanium which had been subjected to different types of pre-treatment. These include: (i) 60-grit SiC grinding, (ii) 320-grit SiC grinding, (iii) 1-µm diamond paste mirror-finishing, (iv) etching with Knoll solution, and (v) laser surface nitriding followed by selective etching. The HA coatings were pulsed laser deposited at different water-vapor pressures to determine the optimal processing conditions. The nitrided-etched specimen exhibits a three dimensional TiN dendritic network which promotes the adhesion between HA coating and titanium substrate. Among the specimens with different pre-treatments, the adhesion strength of HA is the highest for the nitrided-etched specimen, reaching about twice that for the mirror-finished specimen. Thin-film X-ray diffraction shows a high degree of crystallinity for the PLD deposited HA. According to energy-dispersive X-ray analysis, the Ca/P ratio of the deposited HA reaches an approximate value of 1.7, similar to that of the HA target. Scanning-electron microscopy reveals that the deposited HA is about 4 μm in thickness. Growth of apatite was rapidly induced on the HA coated specimens when immersed in Hanks' solution for 4 days, indicating that the PLD HA coating is highly bone bioactive. This could be partly due to the high wettability of the PLD HA surface.  相似文献   

12.
The change of phase, morphology and bond strength of plasma sprayed hydroxyapatite (HA) coating and ZrO2/HA composite coatings immersed in simulated body fluid (SBF) for various periods of time was studied. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were used to identify the phase and observe the morphology of the coating surface before and after immersion. In addition, inductively coupled plasma emission spectroscopy (ICP) was used to measure the ion release rate of coatings in SBF for various periods of time. Observation of the morphology by SEM shows that the composite coating with the addition of ZrO2 in HA significantly reduced the dissolution rate of impurity phases in simulated body fluid. The argument was supported by measurement of Ca2+ ion concentration in SBF. During plasma spraying, less OH- ions were lost in a ZrO2-containing composite coating. This factor, together with the reduced effective surface of the ZrO2-containing HA coating, were attributed to the reduced dissolution rate of the composite coatings. All the plasma sprayed coatings degraded after immersion in SBF owing to dissolution of constituents in the coating, however, the addition of ZrO2 in HA improved the bonding strength of HA coating after immersion in SBF.  相似文献   

13.
Hydroxyapatite (HA) powders are ultrasonically dispersed in the precursor of fluoridated hydroxyapatite (FHA) or fluorapatite (FA) to form a “colloidal sol”. HA/FA biphasic coatings are prepared on Ti6Al4V substrate via dip coating, 150 °C drying and 600 °C firing. The coatings show homogenous distribution of HA particles in the FA matrix. The relative phase proportion can be tailored by the amount of HA in the colloidal sol. The surfaces of the coatings consist of two kinds of distinct domains: HA and FA, resulting in a compositionally heterogeneous surface. The biphasic coating surface becomes increasingly rougher with HA powders, from around 200 nm of pure FA to 400–600 nm in Ra of biphasic coatings. The rougher biphasic HA/FA surfaces with chemically controllable domains will favor cell attachment, apatite layer deposition and necessary dissolution in clinical applications.  相似文献   

14.
在经过渡层预处理的TC4钛合金表面上预置设定配比的CaHPO4·2H2O、CaCO3混合粉末,比较少量Y2O3粉末对合成与涂覆生物陶瓷涂层的影响经优化激光工艺处理后,成功地实现一步激光束合成与涂覆生物陶瓷涂层该涂层具有优良的力学性能,且改善了植入材料弹性模量与生物硬组织的匹配性Y2O3对生物陶瓷涂层的合成及性能改善均有重要作用。  相似文献   

15.
The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.  相似文献   

16.
王昌祥  刘仲阳 《功能材料》1999,30(4):438-440
采用Ar^+离子束溅射沉积技术和钛基体上沉积羟基磷灰石薄膜涂层,Ar^+离子束的能量分别为0.9keV、1.2keV和1.5keV。利用X射线衍射(XRD)、扫描电(SEM0、透射电镜(TEM)和红外光谱(FTIR)等检测方法,对制备的羟基磷灰石薄膜涂层进行了表征。X射线衍射和透射电结果表明该薄膜涂层为非晶态;红外光谱中无羟基(OH)特征峰存在,CO3根吸收峰的出现说明制备过程中会引入CO3根;扫  相似文献   

17.
There is an increasing industrial demand for metal alloys with high wear resistance under severe operating conditions. Ni-based alloys, such as Inconel superalloys, are an excellent option for these applications; however, their use is limited by their high cost. Ni-based coatings deposited onto carbon steel substrates are being developed to achieve desired surface properties with reduced cost. Laser cladding deposition has emerged as an excellent method for processing Ni based coatings. In this work, microstructure, mechanical properties and local wear behaviour have been investigated in response to the addition of Cr3C2 ceramic particles into an Inconel 625 alloy deposited onto a ferritic steel substrate by laser cladding. Using this deposition technique, a homogeneous distribution of Cr3C2 particles was observed in the coating microstructure. The addition of ceramic particles to the starting powder resulted in the formation of hard precipitates in the coating microstructure. The partial dissolution of Cr3C2 particles during the laser cladding process increased the hardness of the Inconel 625 matrix. Depth sensing indentation and scratch tests were performed to study the local wear behaviour and scratch resistance of the cermet matrix compared with the conventional Inconel 625 alloy. Finally, the effect of Cr3C2 on mechanical properties was correlated with the observed microstructure modifications.  相似文献   

18.
张雅静  时贵安  郭廷廷  陆前 《材料导报》2016,30(Z2):361-364
镁合金降解速率过快限制了其作为生物医用材料的应用,对镁合金降解速率的控制成为了研究的热点。采用仿生法在MgZnSrCa合金基体表面形成羟基磷灰石涂层。利用X射线衍射仪、扫描电子显微镜及能谱仪对涂层结构、形貌和成分进行分析和观察。通过失重法、析氢法、pH值测定等方法,研究不同涂层形貌的合金试样在人体模拟体液(SBF)中的降解速率。实验结果表明:羟基磷灰石(HA)涂层可以降低合金的降解速率,可以通过控制涂层形貌对合金的降解速率进行控制。  相似文献   

19.
Magnesium-containing apatite coatings were prepared on Ti6Al4V substrates by sol-gel dip coating method. Standard simulated body fluid (SBF) was used to evaluate the bioactivity of the coatings. A series of the coatings according to the composition (Ca10−xMgx)(PO4)6(OH)2, where x = 0 to 2, is synthesized and immersed in the standard SBF for periods of 7 to 35 days for direct deposition of apatite layer from the SBF solution. Scanning electron microscopy (SEM) was used to examine the morphology changes of the SBF apatite layer that occurred during in vitro immersion. X-ray diffractometry, Fourier Transformation Infra-Red Spectroscopy and X-ray Photoelectron Spectroscopy were used to analyse the phases, chemical groups and composition of the sol-gel coating. Results show that as the sol-gel coating contains magnesium, this promotes deposition of apatite layer from SBF. As x ≤ 1, SBF immersion gives rise to a dense apatite layer. However, as ? 1, selected dissolution of the deposited layer takes place, which results in serious pitting on the surface. Also, Mg ions from the dissolution of the sol-gel coating during immersion in the SBF apparently played a role in the subsequent deposition of apatite o the coating, evidence of Mg was found in the apatite layer.  相似文献   

20.
Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号