首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Utilization of empty fruit bunch (EFB), a by-product of the palm oil production, needs to be developed because of the expanding palm oil production scale. EFB saccharification residue was obtained as a by-product of the enzymatic preparation of sugar from EFB. The liquefaction of EFB saccharification residue was performed using a mixture of polyethylene glycol (PEG) #300 and glycerol as a solvent and sulfuric acid as a catalyst. The liquefaction conditions such as liquefaction solvent ratio, liquefaction temperature, catalyst loading, and liquefaction time were optimized, and up to 90% of biomass conversion of the EFB saccharification residue was obtained. The biopolyol with approximately 890 mg KOH/g hydroxyl number was used for the synthesis of bio-polyurethane and bio-polyester, and the polymerized products were confirmed using Fourier Transform Infrared spectroscopy analysis. Basic thermal characteristics such as glass transition temperature and thermal decomposition temperature were determined to be 93.6 and 200°C using thermogravimetric analysis and differential scanning calorimetry, respectively.  相似文献   

2.
以聚乙二醇(PEG-400)和丙三醇(Gl)为液化剂,浓硫酸为催化剂,采用微波辅助的方法对椰衣进行液化。研究了液化时间、催化剂用量、温度、PEG-400/Gl质量比及椰衣与液化剂质量比对液化率的影响。结果表明:椰衣的最优液化条件为反应时间20 min、浓硫酸用量3%(以液化剂质量计)、反应温度160℃、PEG-400/Gl质量比为4:1、液化剂与椰衣质量比为5:1,在此条件下,椰衣的液化率最高,为88.83%,液化产物25℃时的黏度为0.235 Pa·s,20℃时密度为1.084 g/cm3。通过凝胶渗透色谱对不同液化时间的液化产物进行分析,结果显示随着反应时间的延长,液化物的重均相对分子质量和分散系数逐渐增大。红外光谱结果表明:液化过程中纤维素、木质素和部分脂肪族碳氢化合物参与反应,生成富含羟基的液化物,且液化残渣中仍有部分纤维素和木质素未被液化。  相似文献   

3.
Liquefaction of Central‐European softwoods meal was performed using a mixture of diethylene glycol and glycerol and a minor addition of p‐toluenesulfonic acid as a catalyst. The liquefied wood was used as a replacement of a certain amount of the polyhydroxy alcohol in the polyester synthesis, enabled by the large number of hydroxyl groups that were available in the liquefied wood. Three different polyesters were synthesized by using adipic acid and phthalic acid anhydride as reagents. The products were characterized using FTIR, GPC/SEC, and viscosity measurements. The polyesters have hydroxyl values that were reduced due to esterification, from 1043 mg KOH/g of the liquefied wood to 400–800 mg KOH/g. Polyhydroxyl alcohols (22–23%) in the polyester formulations were replaced by wood derivatives. Such saturated polyesters are suitable for further use in polyurethane foam production. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The powders of monarch birch wood (Betula maximowiczina Regel) were liquefied into phenol using sulfuric acid as a catalyst at various temperatures and reaction times. Typical kinetic parameters of the degrading reaction of wood in the presence of phenol and the acid were determined using typical kinetic models. In addition, the activation parameters of the liquefaction of wood were determined according to transition-state theory. The results of showed percent liquefied wood that about 100% of the wood could be liquefied into phenol at a temperature of 150°C for about 2 h. However, about 68% of phenol was found to react mainly with wood components along with sulfuric acid and phenol itself. The kinetic studies showed that the liquefaction of wood into phenol using sulfuric acid obeyed a bimolecular type second-order reaction and Arrhenius law. The activation energy of the liquefaction was 68.5 kJ mol?1. Furthermore, the findings related with activation enthalpy showed that the liquefaction of wood possessed a primarily endothermic reaction nature.  相似文献   

5.
The feasibility of liquefying grape seeds (GS) in the blended solvents of PEG 400 and glycerol for the production of biopolyol was investigated. Different liquefaction conditions have great influences on the residue ratio of GS. The influences of the liquefaction condition such as temperature, time, catalyst percentage, and liquid–solid ratio on the residue ratio were discussed. The optimal conditions obtained were 180 °C, 120 min, catalyst percentage (percentage of solvent mass) of 3.5%, and liquid–solid ratio of 4. The FTIR showed that the lignin, cellulose, and hemicellulose in the GS were effectively decomposed in the liquefaction process. The characteristic parameters of the biopolyol were as follows: hydroxyl number of 397.46 mg KOH/g, acid number of 1.85 mg KOH/g, viscosity of 2960 mPa·s, weight‐average molecular weight of 5.18 × 103 g mol−1, and polydispersity of 3.64. These results suggest that the GS‐based polyol was suitable for the production of polyurethane foams. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43835.  相似文献   

6.
Bamboo residues were liquefied by using a solvent mixture consisting of polyethylene glycol 400 and crude glycerol (4/1, w/w) with 98% sulfuric acid as catalyst at 160°C for 120 min. The liquefied bamboo had hydroxyl values from 178 to 200 mg KOH/g and viscosities from 507 to 2201 mPa S. The obtained bamboo‐based polyols were reacted with various amounts of polyaryl polymethylene isocyanate (PAPI), using distilled water as blowing agent, silicone as surfactant, and triethylenediamine and dibutyltine dilaurate as cocatalyst to produce semirigid polyurethane (PU) foams. The [NCO]/[OH] ratio was found to be an important factor to control the mechanical properties of PU foams. At a fixed [NCO]/[OH] ratio, both density and compressive strength of PU foams decreased with the increase of bamboo content. The microstructure of PU foams indicates that [NCO]/[OH] ratios are important for cell formation and chemical reactions. The uniformity and cell structure of the foams are comparable to their corresponding compressive strengths. Moreover, the thermogravimetry analysis showed that all the semirigid PU foams had approximately the same degradation temperature of about 250 to 440°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The effects of crude glycerol impurities on acid‐catalyzed biomass liquefaction by crude glycerol were investigated. Salts (i.e., NaCl and Na2SO4) decreased biomass conversion ratios and negatively affected the properties of polyols produced. Regression models were developed and validated as appropriate for describing the relationships between organic impurities and biomass conversion ratios and between organic impurities and the hydroxyl number of polyols. Polyols produced from crude glycerol containing 0–45% organic impurities showed the hydroxyl number varying from 1301 to 700 mg KOH/g, acid number from 19 to 28 mg KOH/g, viscosity from 2.4 to 29.2 Pa s, and molecular weight (Mw) from 244 to 550 g/mol. Crude glycerol containing 40–50 wt % of organic impurities was suitable to produce polyols with suitable properties for rigid and/or semi‐rigid polyurethane (PU) foam applications. The produced PU foams showed density and compressive strength comparable to those derived from petrochemical solvent‐based liquefaction processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40739.  相似文献   

8.
Natural lignocellulose differs from the synthetic polymer due to the mineral matter which has a great influence on its degradation. To better understand lignocelluloses liquefaction, the bagasse was liquefied in alcoholic solvent [polyethylene glycol (PEG 400)/glycerol] catalyzed by sulfuric acid at 140–180 °C under atmospheric pressure. The amount of major components (cellulose, hemicellulose, lignin and ash) in the liquefied residue was used as a measurement of the extent of liquefaction. The results showed that hemicellulose is the most reactive component to liquefaction among other major cell wall components, followed by the lignin and cellulose. The content of the ash increased slowly with the reaction time under all reaction temperatures due to the re-condensation or re-precipitation of liquefied components. Based on the experimental results, the reaction kinetics for bagasse liquefaction was modeled and the activation energies, frequency factors and reaction orders for cellulose and lignin were calculated in a conventional manner. The activation energies for the liquefaction of lignin, cellulose and bagasse were 30.51 kJ mol−1, 72.83 kJ mol−1, and 67.09 kJ mol−1, respectively. The results of the enthalpy indicated the liquefaction of biomass is a highly endothermic reaction process. A better understanding to the liquefaction kinetics of biomass could be conducted based on the cell wall component of the liquefied residue.  相似文献   

9.
The powders of monarch birch wood (Betula maximowiczina Regel) were liquefied into phenol using sulfuric acid as a catalyst at various temperatures and reaction times. Typical kinetic parameters of the degrading reaction of wood in the presence of phenol and the acid were determined using typical kinetic models. In addition, the activation parameters of the liquefaction of wood were determined according to transition-state theory. The results of showed percent liquefied wood that about 100% of the wood could be liquefied into phenol at a temperature of 150°C for about 2 h. However, about 68% of phenol was found to react mainly with wood components along with sulfuric acid and phenol itself. The kinetic studies showed that the liquefaction of wood into phenol using sulfuric acid obeyed a bimolecular type second-order reaction and Arrhenius law. The activation energy of the liquefaction was 68.5 kJ mol-1. Furthermore, the findings related with activation enthalpy showed that the liquefaction of wood possessed a primarily endothermic reaction nature.  相似文献   

10.
The residue of oleaginous yeast (ROY) was liquefied in polyhydric alcohols using sulfuric acid as catalyst. The effects of some liquefaction conditions on the liquefied residue rate, such as liquefaction temperature, catalyst loading, reaction time, glycerol concentration and solvent/ROY ratio, were discussed. The liquefied residue rate decreased as the reaction time, liquefaction temperature, catalyst loading, solvent/ROY ratio increased. The re-polymerization of liquefied products was favored in later stage reaction. Higher catalyst loading and lower solvent/ROY ratio could accelerate the re-polymerization of liquefied products; thus the liquefied residue increased. Fourier transform infrared (FT-IR) analyses showed that the main component of ROY is polysaccharide. The gas chromatography and mass spectrometry (GC-MS) analysis showed that liquefied products of ROY included alcohols, acids, ketones, aldehydes, amide, ester and their derivatives.  相似文献   

11.
毛竹多元醇液化及液化产物的分析   总被引:1,自引:0,他引:1  
以多元醇和丙三醇为液化剂,硫酸为催化剂,对毛竹粉进行了液化实验。通过单因素分析和正交实验方法研究竹粉多元醇液化工艺,从节省能源和时间的角度考虑,确定其最佳液化工艺条件为:聚乙二醇400与丙三醇质量比为80∶2 0,在液固质量比3.5∶1、硫酸质量分数3%、反应温度160℃、反应时间90 min时,液化率可达99.32%。所得毛竹粉多元醇液化产物的羟值为28~142.63 mg/g,黏度为100~840 mPa.s。并用红外光谱、GC-MS、凝胶渗透色谱分析了液化产物。  相似文献   

12.
巨菌草沼渣制备液化多元醇及合成聚氨酯的研究   总被引:1,自引:0,他引:1  
以巨菌草经厌氧沼气发酵后产生的沼渣为原料,在聚乙二醇(PEG400)和丙三醇的混合溶剂中进行液化制备液化多元醇。研究了液化条件对液化效果的影响。结果表明:巨菌草沼渣最佳液化条件为液化试剂PEG400/丙三醇(质量比)1.5:1、液化温度160℃、液化时间1.5h、液固比(质量比)2.9:1、催化剂浓硫酸用量为液化试剂质量5%。在此条件下,沼渣液化效果最好,制得的液化多元醇羟值为498mg/g,适用于聚氨酯硬质泡沫的生产。用液化多元醇部分代替聚醚多元醇制备聚氨酯材料,质量比为1:1时,所得材料性能最佳,密度和压缩强度分别为38.7kg/m3和0.21MPa。  相似文献   

13.
Chinese eucalyptus was subjected to a liquefaction process using glycerol/ethylene glycol (EG) as liquefaction solvent. The effects of various liquefaction conditions, including reaction time, liquefaction temperature, acid concentration, and liquor ratio on the chemical composition of liquefied wood residues were studied. The results showed that the whole liquefaction process took place in two stages, the liquefaction yield of wood depended on the reaction temperature, acid concentration and liquor ratio. With increased acid concentration the liquefaction yield, acid‐insoluble lignin, and hemicellulose content of the residues were increased, and the relative content of cellulose was decreased. Fourier transform infrared (FT‐IR) analyses of the residues showed that hemicellulose and lignin were almost decomposed at the initial stages of reaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Microwave liquefaction of precipitated Kraft lignin was carried out in polyethylene glycol (PEG) and glycerol (G) mixed with or without H2SO4 as catalyst. The influences of some independent variables on the yield and hydroxyl index were discussed. The viscosity, molecular distribution (GPC), and the types of volatiles measured by gas chromatography–Mass spectrometry (GC-MS) of all the liquefied products were determined. Response surface methodology (RSM) was used to optimize liquefaction conditions. Based on the results, lignin/solvents (wt%), catalyst/solvents (wt%), and reaction time were chosen as independent variables for a central composite design (CCD). The optimal liquefaction conditions were as: 20 wt% of lignin, 3 wt% of catalyst at 5 min with yield and hydroxyl number of 95.27% and 537.95 mg KOH.g?1, respectively. Functional groups (measured by ATR-IR [attenuated total reflectance – infrared]) and the thermal degradation (TGA) of optimized bio-polyol and precipitated kraft lignin were determined.  相似文献   

15.
In this study, lodgepole pine (Pinus contorta Dougl.) bark infested by the mountain pine beetles (Dendroctonus ponderosae hopkins) was liquefied using either polyethylene glycol (PEG) or polyethylene glycol/glycerol (PEG/G) as the solvent. It was found that the addition of glycerol to PEG reduced the residue ratio during bark liquefaction. The liquefied bark fraction obtained by using PEG/G had a slightly higher hydroxyl number than that obtained by using PEG. The residue from PEG/G liquefaction contained less lignin and more cellulose than the residue from PEG liquefaction. Various polyurethane foams containing liquefied bark fractions were made, and it was found that the weight ratios of liquefied bark to pMDI used in foam formulation and bark liquefaction solvents affected the density, gel content, thermal stability, mechanical properties, and the cell structure of the resulting foams. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Depolymerized polyethylene terephthalate and liquefied wood polyesters can be used as a polyol for the production of polyurethane/polyisocyanurate foams. In this research, liquefied wood was synthesized by using a combination of diethylene glycol and glycerol and due to the possibility of using glycerol that is a by‐product in biodiesel production, our goal was to use as much glycerol in the liquefaction reagent as possible. We determined the properties of the polyols, properties of produced foams, and explained their correlation. Greater amount of glycerol in the liquefaction reagent resulted in higher OH number, molecular weight, functionality, and viscosity of the polyol, as well as in longer cream time and tack free time in foam preparation. Glass transition temperature, density, and water absorption of the foam increased with increasing amount of glycerol in liquefied wood. Compressive stress increased up to 30% of the glycerol in the reagent and then reduced, while thermal conductivity was not affected. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41522.  相似文献   

17.
Sugi (Criptmeria Japonica) wood meal was liquefied at 150°C with a mixture of poly(ethylene glycol) 400 and glycerin in the presence of a sulfuric acid catalyst. The resulting liquefaction products were used directly to prepare isocyanate adhesives via mixing with polymeric diphenylmethane diisocyanate without the removal of the residue. The properties of the liquefaction products and the performances of bonded plywood were tested. The results showed that the residue content decreased and the hydroxyl value increased as the reaction time increased. The viscosity and weight‐average molecular weight significantly changed with the reaction time. All the dry test results of the shear strength met the Japanese Agricultural Standard (JAS) criteria for plywood. After a cyclic steaming treatment, however, only the plywood bonding with adhesives from the liquefied wood with a reaction time of 1.5 h satisfied the JAS criteria. The wood failure was very low. The emissions of formaldehyde and acetaldehyde were extremely low. Liquefied‐wood‐based isocyanate adhesives have the potential to become ideal wood adhesives because of their bond durability, safety, and recyclability.  相似文献   

18.
Wheat straw was liquefied in the mixture of polyethylene glycol (PEG 400) and glycerin in the presence of acid at the temperature 130–160°C. The final liquefaction products having the hydroxyl number of 250–430 mg KOH/g and the of about 1050 can be used as the polyol component to manufacture polyurethane. A kind of polyurethane foam was prepared from liquefied wheat straw, commercial polyol, and diisocyanates in the presence of organotin catalysts and foaming agents. The polyurethane foam presented better compressive strength and thermal stability than that manufactured from diisocyanate and polyol alone. The thermal stability of PU foam was improved with the increase of [NCO]/[OH] ratio and the addition of liquefied wheat straw. The polyurethane foam presented faster biodegradation at ambient temperature than normal polyurethane foam did. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
以制备纤维乙醇得到的酶解玉米秸秆残渣为原料,采用碱性乙醇法提取木质素,然后用聚乙二醇/甘油溶液将木质素进行液化得到木质素基多元醇,并以此液化产物代替部分聚醚多元醇用于聚氨酯泡沫的合成。结果表明:碱性乙醇法得到的木质素提取率为93.5%,木质素质量分数达到94.1%;在PEG-400/丙三醇液化体系中,木质素液化率高达99.5%,液化产物羟值为360 mg KOH/g;在聚氨酯合成中,木质素液化溶液对聚醚多元醇的替代量可以达质量分数47%,所得聚氨酯泡沫产品的芯密度和压缩强度分别为48.6 kg/m3和212 k Pa,满足工业聚氨酯硬泡的国家标准。  相似文献   

20.
Non-thermal plasma exhibits unique advantages in biomass conversion for the sustainable production of higher-value energy carriers. Different homogeneous catalysts are usually required for plasma-enabled biomass liquefaction to achieve time-and energy-efficient conversions. However, the effects of such catalysts on the plasma-assisted liquefaction process and of the plasma on those catalysts have not been thoroughly studied. In this study, an electrical discharge plasma is employed to promote the direct liquefaction of sawdust in a mixture of polyethylene glycol 200 and glycerol. Three commonly used chemicals, sulfuric acid, nitric acid and sodium p-toluene sulfate, were selected as catalysts. The effects of the type of catalyst and concentration on the liquefaction yield were examined; further, the roles of the catalysts in the plasma liquefaction process have been discussed. The results showed that the liquefaction yield attains a value of 90% within 5 min when 1% sulfuric acid was employed as the catalyst. Compared with the other catalysts, sulfuric acid presents the highest efficiency for the liquefaction of sawdust. It was observed that hydrogen ions from the catalyst were primarily responsible for the significant thermal effects on the liquefaction system and the generation of large quantities of active species; these effects directly contributed to a higher efficacy of the plasma-enabled liquefaction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号