首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
We show that hydrogenated amorphous silicon thin-film transistors (a-Si:H TFT's) with active layer thickness of 13 nm perform better for display applications than devices with thicker 50-nm active layers. A direct comparison of a-Si:H TFT's fabricated using an i-stopper TFT structure shows that ultrathin active layers significantly improve the device characteristics. For a 5-μm channel length TFT, the linear region (VDS=0.1 V) and saturation region mobilities increase from 0.4 cm2/V·s and 0.7 cm2/V·s for a 50-nm thick active layer a-Si:H device to 0.7 cm2/V·s and 1.2 cm2/V·s for a 13-nm thick active layer a-Si:H layer device fabricated with otherwise identical geometry and processing  相似文献   

2.
The authors have fabricated a new low temperature polycrystalline silicon (poly-Si) thin film transistor (TFT) with silicon nitride (SiN x) ion-stopper and laser annealed poly-Si. The fabricated poly-Si TFT using SiNx as the ion-stopper as well as the gate insulator exhibited a field effect mobility of 110 cm2/Vs, subthreshold voltage of 5.5 V, subthreshold slope of 0.48 V/dec., and on/off current ratio of ~106. Low off-state leakage current of 2.4×10-2 A/μm at the drain voltage of 5 V and the gate voltage of -5 V was achieved  相似文献   

3.
Oxidation of channel polysilicon improves characteristics of narrow channel TFT's, especially in leakage current. Small leakage current of less than -20 fA/μm and high on/off ratio of about 7 orders of magnitude at a drain voltage of -3.3 V have been achieved by this method. By the analysis of trap densities, leakage current reduction in the oxidized TFT is attributed to the oxidation encroachment under the channel polysilicon which results in a decrease of interface-state density from 5×1011/cm2 to about 1010/cm2 at both gate side and back side of the channel polysilicon. It is pointed out that interface state is in some cases more responsible for device degradation than bulk traps and that the reduction of interface states is indispensable to improving device characteristics. This method is directly applicable to TFT load SRAM's in which TFT width is less than 0.5 μm  相似文献   

4.
A new Si thin-film transistor (TFT) has been proposed where only one grain-boundary exists at the center of channel, and the source and drain are within single grains with good crystallinity. The device fabricated by an excimer-laser crystallization method at the maximum temperature of 500°C, had the on-off current ratio ≅106 , the field-effect mobility ≅330 cm2/Vs and the subthreshold swing ≅1.1 V/dec, respectively, For the device processed at 800°C, they are >106, >450 cm2 /Vs and ≅0.51 V/dec, respectively  相似文献   

5.
Electric field enhanced silicide mediated crystallization (SMC) was introduced for low-temperature polycrystalline silicon thin-film transistors (TFTs) on glass substrates. The amorphous silicon (a-Si) film having an average Ni thickness of 0.15 Å, was completely crystallized at a temperature of 480°C within 30 min in the presence of an electric field of 40 V/cm. The poly-Si is composed of needlelike crystallites with a few μm length and about 50 nm width. The poly-Si TFT using the SMC exhibited a field effect mobility of 86 cm2/Vs, a threshold voltage of -0.6 V, and a subthreshold slope of 0.6 V/dec  相似文献   

6.
GaAs-AlGaAs and strained layer In0.3Ga0.7As-GaAs-AlGaAs GRINSCH SQW lasers grown by molecular beam epitaxy are discussed. The strained-layers have threshold currents of 12 mA for 30-μm×400-μm devices (1000 A/cm2) and threshold current densities of 167 A/cm2 for 150-μm×800-μm devices. The threshold currents of strained-layer InGaAs lasers are lower than those of GaAs for all dimensions tested with 20-μm-wide GaAs devices exhibiting threshold currents three times those of In0.3Ga0.7As devices. Microwave modulation of 10-μm×500-μm strained-layer lasers with simple mesa structures yields bandwidths of 6 GHz. For all dimensions tested, strained-layer InGaAs devices have greater bandwidths than GaAs devices. These measurements confirm theoretical predictions of the effects of valence band modification due to biaxially compressive strain  相似文献   

7.
We demonstrate a new self-aligned TFT process for hydrogenated amorphous silicon thin-film transistors (a-Si:H TFTs). Two backside exposure photolithography steps are used to fabricate fully self-aligned tri-layer TFTs with deposited n+ contacts. Since no critical data alignment is required, this simple process is well suited to fabrication of short channel TFTs. We have fabricated fully self-aligned tri-layer a-Si:H TFTs with excellent device performance, and contact overlaps <1 μm. For a 20-μm channel length TFT with an a-Si:H thickness of 13 nm, the linear region (VDS=0.1 V) and saturation region (VDS=25 V) extrinsic mobility values are both 1.2 cm2/V-s, the off currents are <1 pA, and the on/off current ratio is >107  相似文献   

8.
A new poly-crystal silicon thin-film transistor (poly-Si TFT) with a transparent bottom-gate electrode has been fabricated by XeF excimer-laser light irradiation from the glass substrate side. Compared with poly-Si TFTs made by XeF or ArF excimer-laser light irradiation to the top Si surface, the new TFT shows a higher electron mobility of about 100 cm2/Vs, independent of the Si film thickness. Therefore, poly-Si driver TFTs and amorphous-silicon (a-Si) TFTs for the matrix can be formed with the same channel-etch type bottom-gate structure simultaneously on the same glass substrate by using the same starting materials. This is expected to open the way for making driver monolithic and active matrix liquid crystal displays  相似文献   

9.
A novel self-aligned polycrystalline silicon (poly-Si) thin-film transistor (TFT) was fabricated using the three layers of poly-Si, silicon-nitride, and thin amorphous silicon. Gate and source/drain silicide formation was carried out simultaneously following silicon nitride and amorphous silicon patterning, enabling the use of only two mask steps for the TFT. The fabricated poly-Si TFT using laser annealed poly-Si exhibited a field-effect mobility of 30.6 cm2/Vs, threshold voltage of 0.5 V, subthreshold slope of 1.9 V/dec., on/off current ratio of ~106, and off-state leakage current of 7.88×10-12 A/μm at the drain voltage of 5 V and gate voltage of -10 V  相似文献   

10.
A thin barrier-donor layer of 200 Å was used to increase the active input capacitance and improve the extrinsic current-gain cutoff frequency (ft) of short-gate-length AlGaN/GaN MODFETs. 0.2-μm gate-length devices fabricated on such an epi-structure with sheet carrier density of ~8×1012 cm-2 and mobility of 1200 cm2/Vs showed a record ft of 50 GHz for GaN based FETs. High channel saturation current and transconductance of 800 mA/mm and 240 mS/mm respectively were also achieved along with breakdown voltages of 80 V per μm gate-drain spacing. These excellent characteristics translated into a CW output power density of 1.7 W/mm at 10 GHz, exceeding previous record for a solid-state HEMT  相似文献   

11.
We have fabricated a high performance polycrystalline silicon (poly-Si) thin film transistor (TFT) with a silicon-nitride (SiNx ) gate insulator using three stacked layers: very thin laser of hydrogenated amorphous silicon (a-Si:H), SiNx and laser annealed poly-Si. After patterning thin a-Si:H/SiNx layers, gate, and source/drain regions were ion-doped and then Ni layer was deposited. This structure was annealed at 250°C to form a NiSi silicide phase. The low resistive Ni silicides were introduced as gate/source/drain electrodes in order to reduce the process steps. The poly-Si with a grain size of 250 nm and low resistance n+ poly-Si for ohmic contact were introduced to achieve a high performance TFT. The fabricated poly-Si TFT exhibited a field effect mobility of 262 cm2/Vs and a threshold voltage of 1 V  相似文献   

12.
GaInP/GaAs heterojunction bipolar transistors (HBTs) have been fabricated and these devices exhibit near-ideal I-V characteristics with very small magnitudes of the base-emitter junction space-charge recombination current. Measured current gains in both 6-μm×6-μm and 100-μm×100-μm devices remain constant for five decades of collector current and are greater than unity at ultrasmall current densities on the order of 1×10-6 A/cm2. For the 6-μm×6-μm device, the current gain reaches a high value of 190 at higher current levels. These device characteristics are also compared to published data of an abrupt AlGaAs/GaAs HBT having a base layer with similar doping level and thickness  相似文献   

13.
We present electrical results from polysilicon thin film transistors (TFT's) fabricated using laser-recrystallized channels and gas-immersion laser-doped source-drain regions. A simple, four-level self-aligned aluminum top-gate process is developed to demonstrate the effectiveness of these laser processes in producing TFT's. The source-drain doping process results in source-drain sheet resistances well below 100 Ω/□. TFT field-effect mobilities in excess of 200 cm2/Vs are measured for the laser-fabricated unhydrogenated TFT's  相似文献   

14.
The demonstration of an optimized strain compensated multiple-quantum-well (MQW) active region for use in 1.3-μm wavelength lasers is described. Utilizing narrow bandgap tensile-strained InGaAsP instead of wide bandgap InGaP barriers in strain-compensated lasers, we observe a reduction in threshold current density (Jth) from 675 to 310 A/cm2 and in T0 from 75 K to 65 K for 2-mm long seven quantum-well devices. Additionally, the lowest reported Jth for MBE grown 1.3-μm wavelength lasers of 120 A/cm2 for single-quantum-well (SQW) 45-mm-long lasers was attained  相似文献   

15.
高性能钆铝锌氧薄膜晶体管的制备   总被引:1,自引:0,他引:1       下载免费PDF全文
本文研究并制备了钆铝锌氧薄膜和以钆铝锌氧为有源层的薄膜晶体管。钆铝锌氧薄膜材料的光致发光光谱和透过率说明钆铝锌氧薄膜在透明显示方向的应用潜力。透射电子显微镜揭示了钆铝锌氧薄膜的非晶态微观结构。钆铝锌氧薄膜晶体管显示了良好的转移特性和输出特性。器件开关比大于10~5、饱和迁移率约为10cm~2·V~(-1)·s~(-1)。实验结果表明,钆铝锌氧薄膜可用作氧化物薄膜晶体管的有源层材料;钆铝锌氧薄膜晶体管可作为像素电路的驱动器件。  相似文献   

16.
We report data on GaAsSb single-quantum-well lasers grown on GaAs substrates. Room temperature pulsed emission at 1.275 μm in a 1250-μm-long device has been observed. Minimum threshold current densities of 535 A/cm2 were measured in 2000-μm-long lasers. We also measured internal losses of 2-5 cm-1, internal quantum efficiencies of 30%-38% and characteristic temperatures T0 of 67°C-77°C. From these parameters, a gain constant G0 of 1660 cm-1 and a transparency current density Jtr of 134 A/cm2 were calculated. The results indicate the potential for fabricating 1.3-μm vertical-cavity surface-emitting lasers from these materials  相似文献   

17.
The fabrication and performance of dummy-gate self-aligned germanium MOSFETs utilizing a native germanium oxynitride gate insulator is reported. Based on device characteristics, channel mobility at 300 K is estimated as 940 cm2/Vs. Common-source characteristics show good saturation and turn-off, and do not exhibit looping or other anomalies. It is felt these results suggest that integration of germanium MOSFETs with photodiodes for monolithic optical-fiber receivers operating at 1.3-μm wavelength should be possible. The results also indicate that the bulk mobility advantage which germanium exhibits relative to silicon carries over in some measure to FET channel mobility  相似文献   

18.
Collector-up InGaAs/InAlAs/InP heterojunction bipolar transistors (HBTs) were successfully fabricated, and their DC and microwave characteristics measured. High collector current density operation (Jc>30 kA/cm2) and high base-emitter junction saturation current density (J0>10-7 A/cm2) were achieved. A cutoff frequency of f t=24 GHz and a maximum frequency of oscillation f max=20 GHz at a collector current density of J0 =23 kA/cm2 were achieved on a nominal 5-μm×10-μm device  相似文献   

19.
We have demonstrated that the performance of the inverted staggered, hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) is improved by a He, H2, NH3 or N2 plasma treatment for a short time on the surface of silicon nitride (SiN x) before a-Si:H deposition. With increasing plasma exposure time, the field-effect mobility increase at first and then decrease, but the threshold voltage changes little. The a-Si:H TFT with a 6-min N2 plasma treatment on SiNx exhibited a field effect mobility of 1.37 cm2/Vs, a threshold voltage of 4.2 V and a subthreshold slope of 0.34 V/dec. It is found that surface roughness of SiNx is decreased and N concentration in the SiN x at the surface region decreases using the plasma treatment  相似文献   

20.
Using a masked hydrogen plasma treatment to spatially control the crystallization of amorphous silicon to polycrystalline silicon in desired areas, amorphous and polycrystalline silicon thin-film transistors (TFTs) with good performance have been integrated in a single film of silicon without laser processing. Both transistors are top gate and shared all process steps. The polycrystalline silicon transistors have an electron mobility in the linear regime of ~15 cm2/Vs, the amorphous silicon transistors have a linear mobility of ~0.7 cm2/Vs and both have an ON/OFF current ratios of >105. Rehydrogenation of amorphous silicon after the 600°C crystallization anneal using another hydrogen plasma is the critical process step for the amorphous silicon transistor performance. The rehydrogenation power, time, and reactor history are the crucial details that are discussed in this paper  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号