首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
针对含有状态和输入受限的二阶多输入多输出非线性系统的控制问题,提出了一种自适应控制策略.通过综合利用障碍Lyapunov函数和动态面控制方法的特性,使得系统的状态满足约束条件而且能够减少计算量.此外,为了处理输入约束和系统中的不确定性的影响,分别设计了辅助系统和自适应算法.通过理论分析表明,闭环系统的所有状态都是有界的,而且系统的状态和输入都满足约束条件.最后,通过一个数值仿真算例和一个实际的航天器姿态控制系统的仿真来验证所提出的自适应控制策略的有效性.  相似文献   

2.
This article focuses on the adaptive tracking control problem for a class of interconnected nonlinear stochastic systems under full‐state constraints based on the hybrid threshold strategy. Different from the existing works, we propose a novel pre‐constrained tracking control algorithm to deal with the full‐state constraint problem. First, a novel nonlinear transformation function and a new coordinate transformation are developed to constrain state variables, which can directly cope with asymmetric state constraints. Second, the hybrid threshold strategy is constructed to provide a reasonable way in balancing system performance and communication constraints. By the use of dynamic surface control technique and neural network approximate technique, a smooth pre‐constrained tracking controller with adaptive laws is designed for the interconnected nonlinear stochastic systems. Moreover, based on the Lyapunov stability theory, it is proved that all state variables are successfully pre‐constrained within asymmetric boundaries. Finally, a simulation example is presented to verify the effectiveness of proposed control algorithm.  相似文献   

3.
针对无角速度测量的刚性航天器姿态跟踪问题,提出一种全状态约束输出反馈控制方法.建立修正罗德里格参数描述的系统模型,提出能够适用于约束与非约束情况的改进型障碍李雅普诺夫函数(MBLF),拓展传统对数型障碍李雅普诺夫函数的适用范围.构造二阶辅助系统,将控制输入和饱和输入之间的差作为构造系统的输入,进而产生信号以补偿饱和的影响.设计状态观测器估计未知状态量,并结合反步法设计输出反馈控制律,保证系统全状态约束性能和姿态跟踪精度.通过李雅普诺夫稳定性分析证明姿态观测误差和跟踪误差能够达到一致最终有界.仿真结果验证所提方法的有效性.  相似文献   

4.
This paper investigates the resilient control problem for constrained continuous‐time cyber‐physical systems subject to bounded disturbances and denial‐of‐service (DoS) attacks. A sampled‐data robust model predictive control law with a packet‐based transmission scheduling is taken advantage to compensate for the loss of the control data during the intermittent DoS intervals, and an event‐triggered control strategy is designed to save communication and computation resources. The robust constraint satisfaction and the stability of the closed‐loop system under DoS attacks are proved. In contrast to the existing studies that guarantee the system under DoS attacks is input‐to‐state stable, the predicted input error caused by the system constraints can be dealt with by the input‐to‐state practical stability framework. Finally, a simulation example is performed to verify the feasibility and efficiency of the proposed strategy.  相似文献   

5.
This article focuses on the problem of adaptive finite‐time neural backstepping control for multi‐input and multi‐output nonlinear systems with time‐varying full‐state constraints and uncertainties. A tan‐type nonlinear mapping function is first proposed to convert the strict‐feedback system into a new pure‐feedback one without constraints. Neural networks are utilized to cope with unknown functions. To improve learning performance, a composite adaptive law is designed using tracking error and approximate error. A finite‐time convergent differentiator is adopted to avoid the problem of “explosion of complexity.” By theoretical analysis, all the signals of system are proved to be bounded, the outputs can track the desired signals in a finite time, and full‐state constraints are not transgressed. Finally, comparative simulations are offered to confirm the validity of the proposed control scheme.  相似文献   

6.
A method is presented for the output-feedback control of discrete-time linear systems with hard constraints on state and control variables. Prior work has shown that optimal controllers for constrained systems take the form of a nonlinear feedback law acting on a set-valued state estimate. In this paper, conventional state estimation schemes are used. A nonlinear control law is derived which views the state estimation error as a disturbance. The resulting control law is then used in conjunction with the conventional observer, rather than set-valued observer, to achieve the desired constrained regulation. The significantly reduced real-time computations come at the cost of restricting the controller structure and thereby introducing possible conservatism in the achievable performance. The results are specialized to the problem of anti-windup for systems with control saturations. A “measurement governor” scheme is introduced that alters plant measurements in such a way to improve performance in the presence of controller saturations.  相似文献   

7.
In this work, we present a novel adaptive fault tolerant control (FTC) scheme for a class of control input and system state constrained multi‐input multi‐output (MIMO) nonlinear systems with both multiplicative and additive actuator faults. The input constraints can be asymmetric, and the state constraints can be time‐varying. A novel tan‐type time‐varying Barrier Lyapunov Function (BLF) is proposed to deal with the state constraints, and an auxiliary system is designed to analyze the effect of the input constraints. We show that under the proposed adaptive FTC scheme, exponential convergence of the output tracking error into a small neighbourhood of zero is guaranteed, while the constraints on the system state will not be violated during operation. Estimation errors for actuator faults are bounded in the closed loop. An illustrative example on a two degree‐of‐freedom robotic manipulator is presented to demonstrate the effectiveness of the proposed FTC scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
本文提出了一种基于约束预测控制的机械臂实时运动控制方法.该控制方法分为两层,分别设计了约束预测控制器和跟踪控制器.其中,约束预测控制器在考虑系统物理约束的条件下,在线为跟踪控制器生成参考轨迹;跟踪控制器采用最优反馈控制律,使机械臂沿参考轨迹运动.为了简化控制器的设计和在线求解,本文采用输入输出线性化的方式简化机械臂动力学模型.同时,为了克服扰动,在约束预测控制器中引入前馈策略,提出了带前馈一反馈控制结构的预测控制设计.因此,本文设计的控制器可以使机械臂在满足物理约束的条件下快速稳定地跟踪到目标位置.通过在PUMA560机理模型上进行仿真实验,验证了预测控制算法的可行性和有效性.  相似文献   

9.
A robust model predictive control scheme for a class of constrained norm‐bounded uncertain discrete‐time linear systems is developed under the hypothesis that only partial state measurements are available for feedback. The proposed strategy involves a two‐phase procedure. Initialization phase is devoted to determining an admissible, though not optimal, linear memoryless controller capable to formally address the input rate constraint; then, during on‐line phase, predictive capabilities complement the designed controller by means of N steps free control actions in a receding horizon fashion. These additive control actions are obtained by solving semidefinite programming problems subject to linear matrix inequalities constraints. As computational burden grows linearly with the control horizon length, an example is developed to show the effectiveness of the proposed approach for realistic control problems: the design of a flight control law for a flexible unmanned over‐actuated aircraft, where the states of the flexibility dynamics are not measurable, is discussed, and a numerical implementation of the controller within a nonlinear simulation environment testifies the validity of the proposed approach and the possibility to implement the algorithm on an onboard computer.  相似文献   

10.
This paper addresses the input constrained consensus of second‐order multiagent systems with nonconvex constraints. A new update law is proposed to make the position states of all agents converge to a common point and the velocities converge to zero, while the input of each agent stays in a certain constraint set. The closed‐loop system is first converted to an equivalent system by taking a novel coordinate transformation. Then, it is proved that the input constrained consensus can be achieved if the graphs jointly have directed spanning trees by using the Metzler matrix theory. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithm.  相似文献   

11.
Aiming at the constrained polytopic uncertain system with energy‐bounded disturbance and unmeasurable states, a novel synthesis scheme to design the output feedback robust model predictive control(MPC)is put forward by using mixed H2/H design approach. The proposed scheme involves an offline design of a robust state observer using linear matrix inequalities(LMIs)and an online output feedback robust MPC algorithm using the estimated states in which the desired mixed objective robust output feedback controllers are cast into efficiently tractable LMI‐based convex optimization problems. In addition, the closed‐loop stability and the recursive feasibility of the proposed robust MPC are guaranteed through an appropriate reformulation of the estimation error bound (EEB). A numerical example subject to input constraints illustrates the effectiveness of the proposed controller.  相似文献   

12.
This paper proposes a robust adaptive dynamic surface control (DSC) scheme for a class of time‐varying delay systems with backlash‐like hysteresis input. The main features of the proposed DSC method are that 1) by using a transformation function, the prescribed transient performance of the tracking error can be guaranteed; 2) by estimating the norm of the unknown weighted vector of the neural network, the computational burden can be greatly reduced; 3) by using the DSC method, the explosion of complexity problem is eliminated. It is proved that the proposed scheme guarantees all the closed‐loop signals being uniformly ultimately bounded. The simulation results show the validity of the proposed control scheme.  相似文献   

13.
We present a solution to the problem of multiple vehicle cooperative path following (CPF) that takes explicitly into account vehicle input constraints, the topology of the intervehicle communication network, and time‐varying communication delays. The objective is to steer a group of vehicles along given spatial paths, at speeds that may be path dependent, while holding a feasible geometric formation. The solution involves decoupling the original CPF problem into two subproblems: (i) single path following of input‐constrained vehicles and (ii) coordination of an input‐constrained multiagent system. The first is solved by adopting a sampled‐data model predictive control scheme, whereas the latter is tackled using a novel distributed control law with an event‐triggered communication (ETC) mechanism. The proposed strategy yields a closed‐loop CPF system that is input‐to‐state‐stable with respect to the system's state (consisting of the path following error of all vehicles and their coordination errors) and the system's input, which includes triggering thresholds for ETC communications and communication delays. Furthermore, with the proposed ETC mechanism, the number of communications among the vehicles are significantly reduced. Simulation examples of multiple autonomous vehicles executing CPF maneuvers in 2D under different communication scenarios illustrate the efficacy of the CPF strategy proposed.  相似文献   

14.
本文针对非参数不确定永磁同步电机系统,提出一种基于扩张状态观测器的重复学习控制方法,实现对周期期望轨迹的高精度跟踪.首先,将永磁同步电机中的非参数不确定性分为周期不确定与非周期不确定两部分.其次,构造包含周期不确定的未知期望控制输入,并设计重复学习律估计未知期望控制输入并补偿系统周期不确定.在此基础上,设计扩张状态观测器,估计系统未知状态和补偿非周期性不确定,进而提高系统鲁棒性.与已有的部分限幅学习律相比,本文提出的全限幅重复学习律可以保证估计值的连续性且能够被限制在指定的界内.最后,基于李雅普诺夫方法分析误差的收敛性能,并给出仿真和实验结果验证本文所提方法的有效性.  相似文献   

15.
This paper develops a novel robust tracking model predictive control (MPC) without terminal constraint for discrete-time nonlinear systems capable to deal with changing setpoints and unknown non-additive bounded disturbances. The MPC scheme without terminal constraint avoids difficult computations for the terminal region and is thus simpler to design and implement. However, the existence of disturbances and/or sudden changes in a setpoint may lead to feasibility and stability issues in this method. In contrast to previous works that considered changing setpoints and/or additive slowly varying disturbance, the proposed method is able to deal with changing setpoints and non-additive non-slowly varying disturbance. The key idea is the addition of tightened input and state (tracking error) constraints as new constraints to the tracking MPC scheme without terminal constraints based on artificial references. In the proposed method, the optimal tracking error converges asymptotically to the invariant set for tracking, and the perturbed system tracking error remains in a variable size tube around the optimal tracking error. Closed-loop input-to-state stability and recursive feasibility of the optimization problem for any piece-wise constant setpoint and non-additive disturbance are guaranteed by tightening input and state constraints as well as weighting the terminal cost function by an appropriate stabilizing weighting factor. The simulation results of the satellite attitude control system are provided to demonstrate the efficiency of the proposed predictive controller.  相似文献   

16.
In this paper, a robust output-feedback adaptive control is proposed for linear time-invariant (LTI) singleinput single-output (SISO) plants with unmeasurable input disturbance. Using dynamic surface control (DSC) technique, it is shown that the explosion of complexity problem in backstepping control can be eliminated. Furthermore, the proposed adaptive DSC scheme has the following merits: 1) by introducing an initialization technique, the L∞ performance of system tracking error can be guaranteed even if the plant high-frequency gain is unknown and the input disturbance exists, and 2) the adaptive law is necessary only at the first design step, which significantly reduces the design procedure. It is proved that with the proposed scheme, all the closed-loop signals are semiglobally uniformly ultimately bounded. Simulation results are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

17.
This paper presents an adaptive neural tracking control approach for uncertain stochastic nonlinear time‐delay systems with input and output constraints. Firstly, the dynamic surface control (DSC) technique is incorporated into adaptive neural control framework to overcome the problem of ‘explosion of complexity’ in the control design. By employing a continuous differentiable asymmetric saturation model, the input constraint problem is solved. Secondly, the appropriate Lyapunov‐Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown time‐delay terms, RBF neural network is utilized to identify the unknown systems functions, and barrier Lyapunov functions (BLFs) are designed to avoid the violation of the output constraint. Finally, based on adaptive backstepping technique, an adaptive neural control method is proposed, and it decreases the number of learning parameters. Using Lyapunov stability theory, it is proved that the designed controller can ensure that all the signals in the closed‐loop system are 4‐Moment (or 2 Moment) semi‐globally uniformly ultimately bounded (SGUUB) and the tracking error converges to a small neighborhood of the origin. Two simulation examples are provided to further illustrate the effectiveness of the proposed approach.  相似文献   

18.
In this work, we provide a new and constructive outlook for the control of state‐and‐input constrained nonlinear systems. Previously, explicit solutions have been mainly focused on the finding of a barrier‐like Lyapunov function, whereas we propose the construction of a diffeomorphism to map all the trajectories of the constrained dynamics into an unconstrained one. Careful analysis has revealed that only some foundations of differential geometry and a technical assumption are necessary to construct the proposed methodology based on the well‐established theories of control Lyapunov functions and Sontag's universal formulae. Altogether, it allows us to obtain an explicit solution that even includes bounded constraints in the control action, giving the designer a way to decide (to some extent) the trade‐off between control saturations and robustness. Moreover, this approach does not rely on the own structure of the system dynamics, therefore covering a broad class of nonlinear systems. The main advantage of this approach is that the use of a diffeomorphism allows the splitting of the mathematical treatment of the constraint and the Lyapunov controller design. The result has been successfully applied to solve the dynamic positioning of an actual ship, where the nonlinear state constraints describe a strait. This approach enabled us to design a control Lyapunov function and thereby use Sontag's formula to solve the stabilisation problem. Realistic simulations have been executed in a real scenario on the simulator owned by an international shipbuilding company.  相似文献   

19.
This paper briefly reviews development of nonlinear model predictive control (NMPC) schemes for finite horizon prediction and basic computational algorithms that can solve the stable real‐time implementation of NMPC in space state form with state and input constraints. In order to ensure stability within a finite prediction horizon, most NMPC schemes use a terminal region constraint at the end of the prediction horizon — a particular NMPC scheme using a terminal region constraint, namely quasi‐infinite horizon, that guarantees asymptotic closed‐loop stability with input constraints is presented. However, when nonlinear processes have both input and state constraints, difficulty arises from failure to satisfy the state constraints due to constraints on input. Therefore, a new NMPC scheme without a terminal region constraint is developed using soften state constraints. A brief comparative simulation study of two NMPC schemes: quasi‐infinite horizon and soften state constraints is done via simple nonlinear examples to demonstrate the ability of the soften state constraints scheme. Finally, some features of future research from this study are discussed.  相似文献   

20.
A new fuzzy adaptive control method is proposed for a class of strict feedback nonlinear systems with immeasurable states and full constraints. The fuzzy logic system is used to design the approximator, which deals with uncertain and continuous functions in the process of backstepping design. The use of an integral barrier Lyapunov function not only ensures that all states are within the bounds of the constraint, but also mixes the states and errors to directly constrain the state, reducing the conservativeness of the constraint satisfaction condition. Considering that the states in most nonlinear systems are immeasurable, a fuzzy adaptive states observer is constructed to estimate the unknown states. Combined with adaptive backstepping technique, an adaptive fuzzy output feedback control method is proposed. The proposed control method ensures that all signals in the closed-loop system are bounded, and that the tracking error converges to a bounded tight set without violating the full state constraint. The simulation results prove the effectiveness of the proposed control scheme.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号