首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
In this article, an improved prescribed performance adaptive control strategy is developed to handle the output tracking control problem for a class of nonlinear high‐order systems with actuator faults. The actuator faults considered include the bias fault and gain fault models. A technique of adding a power integrator is utilized to deal with the controller design problem of high‐order system. With the help of backstepping technology and the classic adaptive control, an output tracking control scheme is proposed, which can guarantee that all signals of the closed‐loop system are bounded and the tracking error converges to a finite‐time predetermined region. Finally, the feasibility of the presented control method is tested through the simulation results.  相似文献   

2.
3.
In the previous work of Huang et al., a decentralized direct adaptive fuzzy H tracking controller of large-scale nonaffine nonlinear systems is obtained predicated upon the assumption that the mismatching error dynamics stay squared integrable. In this note, we focus in the absence of the conservative assumption upon developing a robust decentralized direct adaptive output feedback fuzzy controller. By combination of a state observer, a fuzzy inference system and robust control technique, the previous controller design is modified and no a priori knowledge of bounds on lumped uncertainties is required. All the signals of the closed-loop large-scale system are proved to be uniformly ultimately bounded. The effectiveness of the developed scheme is demonstrated through the simulation results of interconnected inverted pendulums.  相似文献   

4.
In this paper, a novel decentralized robust adaptive fuzzy control scheme is proposed for a class of large‐scale multiple‐input multiple‐output uncertain nonlinear systems. By virtue of fuzzy logic systems and the regularized inverse matrix, the decentralized robust indirect adaptive fuzzy controller is developed such that the controller singularity problem is addressed under a united design framework; no a priori knowledge of the bounds on lumped uncertainties are being required. The closed‐loop large‐scale system is proved to be asymptotically stable. Simulation results confirmed the validity of the approach presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A novel decentralized adaptive fuzzy controller is developed for a class of large‐scale uncertain nonaffine nonlinear systems in this paper. Incorporating the benefits of fuzzy systems, implicit function theorem, and robust control technique, the interconnections between subsystems are extended to general unknown nonlinear functions. No a priori knowledge of lower and upper bounds on lumped uncertainties is required to implement each local controller. The resulting closed‐loop large‐scale system is proved to be asymptotically stable. The controller design is applicable to an automated highway system and simulation results confirm its practical usefulness.  相似文献   

6.
In this paper, a discontinuous projection‐based adaptive robust control (ARC) scheme is constructed for a class of nonlinear systems in an extended semi‐strict feedback form by incorporating a nonlinear observer and a dynamic normalization signal. The form allows for parametric uncertainties, uncertain nonlinearities, and dynamic uncertainties. The unmeasured states associated with the dynamic uncertainties are assumed to enter the system equations in an affine fashion. A novel nonlinear observer is first constructed to estimate the unmeasured states for a less conservative design. Estimation errors of dynamic uncertainties, as well as other model uncertainties, are dealt with effectively via certain robust feedback control terms for a guaranteed robust performance. In contrast with existing conservative robust adaptive control schemes, the proposed ARC method makes full use of the available structural information on the unmeasured state dynamics and the prior knowledge on the bounds of parameter variations for high performance. The resulting ARC controller achieves a prescribed output tracking transient performance and final tracking accuracy in the sense that the upper bound on the absolute value of the output tracking error over entire time‐history is given and related to certain controller design parameters in a known form. Furthermore, in the absence of uncertain nonlinearities, asymptotic output tracking is also achieved. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
An adaptive prescribed performance control design procedure for a class of nonlinear pure‐feedback systems with both unknown vector parameters and unmodeled dynamics is presented. The unmodeled dynamics lie within some bounded functions, which are assumed to be partially known. A state transformation and an auxiliary system are proposed to avoid using the cumbersome formula to handle the nonaffine structure. Simultaneously, a parameter‐type Lyapunov function and L function are designed to ensure the prescribed performance of the pure‐feedback system. As illustrated by examples, the proposed adaptive prescribed performance control scheme is shown to guarantee global uniform ultimate boundedness. At the same time, this method not only guarantees the prescribed performance of the system but also makes the tracking error asymptotically close to a certain value or stable.  相似文献   

9.
In this paper, an adaptive decentralized tracking control scheme is designed for large‐scale nonlinear systems with input quantization, actuator faults, and external disturbance. The nonlinearities, time‐varying actuator faults, and disturbance are assumed to exist unknown upper and lower bounds. Then, an adaptive decentralized fault‐tolerant tracking control method is designed without using backstepping technique and neural networks. In the proposed control scheme, adaptive mechanisms are used to compensate the effects of unknown nonlinearities, input quantization, actuator faults, and disturbance. The designed adaptive control strategy can guarantee that all the signals of each subsystem are bounded and the tracking errors of all subsystems converge asymptotically to zero. Finally, simulation results are provided to illustrate the effectiveness of the designed approach.  相似文献   

10.
In this article, a robust adaptive self-structuring fuzzy control (RASFC) scheme for the uncertain or ill-defined nonlinear, nonaffine systems is proposed. The RASFC scheme is composed of a robust adaptive controller and a self-structuring fuzzy controller. In the self-structuring fuzzy controller design, a novel self-structuring fuzzy system (SFS) is used to approximate the unknown plant nonlinearity, and the SFS can automatically grow and prune fuzzy rules to realise a compact fuzzy rule base. The robust adaptive controller is designed to achieve an L 2 tracking performance to stabilise the closed-loop system. This L 2 tracking performance can provide a clear expression of tracking error in terms of the sum of lumped uncertainty and external disturbance, which has not been shown in previous works. Finally, five examples are presented to show that the proposed RASFC scheme can achieve favourable tracking performance, yet heavy computational burden is relieved.  相似文献   

11.
This paper reports an immersion and invariance (I&I)–based robust nonlinear controller for atomic force microscope (AFM) applications. The AFM dynamics is prone to chaos, which, in practice, leads to performance degradation and inaccurate measurements. Therefore, we design a nonlinear tracking controller that stabilizes the AFM dynamics around a desired periodic orbit. To this end, in the tracking error state space, we define a target invariant manifold, on which the system dynamics fulfills the control objective. First, considering a nominal case with full state measurement and no modeling uncertainty, we design an I&I controller to render the target manifold exponentially attractive. Next, we consider an uncertain AFM dynamics, in which only the displacement of the probe cantilever is measured. In the framework of the I&I method, we recast the robust output feedback control problem as the immersion of the output feedback closed‐loop system into the nominal full state one. For this purpose, we define another target invariant manifold that recovers the performance of the nominal control system. Moreover, to handle large uncertainty/disturbances, we incorporate the method of active disturbance rejection into the I&I output feedback control. Through Lyapunov‐based analysis of the closed‐loop stability and robustness, we show the semiglobal practical stability and convergence of the tracking error dynamics. Finally, we present a set of detailed, comparative software simulations to assess the effectiveness of the control method.  相似文献   

12.
This paper investigates active disturbance rejection control involving the fractional‐order tracking differentiator, the fractional‐order PID controller with compensation and the fractional‐order extended state observer for nonlinear fractional‐order systems. Firstly, the fractional‐order optimal‐time control scheme is studied to propose the fractional‐order tracking differentiator by the Hamilton function and fractional‐order optimal conditions. Secondly, the linear fractional‐order extend state observer is offered to acquire the estimated value of the sum of nonlinear functions and disturbances existing in the investigated nonlinear fractional‐order plant. For the disturbance existing in the feedback output, the effect of the disturbance is discussed to choose a reasonable parameter in fractional‐order extended state observer. Thirdly, by this observed value, the nonlinear fractional‐order plant is converted into a linear fractional‐order plant by adding the compensation in the controller. With the aid of real root boundary, complex root boundary, and imaginary boot boundary, the approximate stabilizing boundary with respect to the integral and differential coefficients is determined for the given proportional coefficient, integral order and differential order. By choosing the suitable parameters, the fractional‐order active disturbance rejection control scheme can deal with the unknown nonlinear functions and disturbances. Finally, the illustrative examples are given to verify the effectiveness of fractional‐order active disturbance rejection control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

14.
This paper describes the design of a robust adaptive fuzzy controller for an uncertain single‐input single‐output nonlinear dynamical systems. While most recent results on fuzzy controllers considers affine systems with fixed rule‐base fuzzy systems, we propose a control scheme for non‐affine nonlinear systems and a dynamic fuzzy rule activation scheme in which an appropriate number of the fuzzy rules are chosen on‐line. By using the proposed scheme, we can reduce the computation time, storage space, and dynamic order of the adaptive fuzzy system without significant performance degradation. The Lyapunov synthesis approach is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as for all other signals in the closed loop. No a priori knowledge of an upper bounds on the uncertainties is required. The theoretical results are illustrated through a simulation example. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This paper studies the output feedback tracking control problem for a class of strict‐feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics using a prescribed performance adaptive neural dynamic surface control design approach. A nonlinear mapping technique is employed to address the state constraints. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions. The unmodeled dynamics is addressed by introducing an available dynamic signal. Subsequently, we construct the controller and parameter adaptive laws using a backstepping technique. Based on Lyapunov stability theory, it is shown that all signals in the closed‐loop system are semiglobally uniformly ultimately bounded and that the tracking error always remains within the prescribed performance bound. Simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

16.
Asymptotic output‐feedback tracking in a class of causal nonminimum phase uncertain nonlinear systems is addressed via sliding mode techniques. Sliding mode control is proposed for robust stabilization of the output tracking error in the presence of a bounded disturbance. The output reference profile and the unknown input/disturbance are supposed to be described by unknown linear exogenous systems of a given order. Local asymptotic stability of the output tracking error dynamics along with the boundedness of the internal states are proven. The unstable internal states are estimated asymptotically via the proposed multistage observer that is based on the method of extended system center. A higher‐order sliding mode observer/differentiator is used for the exact estimation of the input–output states in a finite time. The bounded disturbance is reconstructed asymptotically. A numerical example illustrates the efficiency of the proposed output‐feedback tracking approach developed for causal nonminimum phase nonlinear systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model‐free multi‐parametric extremum seeking control to iteratively auto‐tune the feedback gains. We analyze the stability of the whole controller, that is, the robust nonlinear controller combined with the multi‐parametric extremum seeking model‐free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, real‐time results for a novel continuous‐time adaptive tracking controller algorithm for nonlinear multiple input multiple output systems are presented. The control algorithm includes the combination of a recurrent high order neural network with block control transformation using a high order sliding modes technique as control law. A neural network is used to identify the dynamic plant behavior where a filtered error algorithm is used to train the neural identifier. A decentralized high order sliding mode, named the twisting algorithm, is used to design chattering‐reduced independent controllers to solve the trajectory tracking problem for a robot arm with three degrees of freedom. Stability analyses are given via a Lyapunov approach.  相似文献   

20.
In this study, a novel robust finite‐time stability controller is proposed for a class of high‐order uncertain nonlinear systems. It uses the dynamic surface control (DSC) approach to simplify the traditional backstepping design for high‐order nonlinear systems, thus avoiding the “explosion of terms”. The finite‐time stability of the closed‐loop system is guaranteed to have high performance, such as fast transient and strong robustness to dynamic uncertainties, and the tracking error is made arbitrarily small. Simulation results of two examples indicate that the proposed controller is effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号